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ABSTRACT

This thesis describes the development of personal computer interfaces for the
Digital Control Subsystem (DCS) and Electrical Power System (EPS) of the Naval
Postgraduate School’s Petite Amateur Navy Satellite Simulator project. The work
includes a brief description of related PANSAT and PANSAT simulator subsystems.

The laboratory activity that provided the information for this work, namely,
programming in the LabVIEW software programs G graphical programming language,
involved the generation of programming code for controlling and reading data from the
simulators component subsystems. Where appropriate, there is limited discussion of key
satellite and simulator component designs and installations.

Through the use of documentation and illustrative figures, the programming and
display components of the interfaces are shown to be functional in the simulator

environment. Instructions for making anticipated design accomodations are included.
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I. INTRODUCTION

The process of designing, testing, and building a satellite includes the development of key
individual components. Failure to complete a single component on time can disrupt the entire
satellite development schedule. As with other complex systems, the ability to simulate the
operation of a satellite in laboratory conditions can substantially enhance the performance of the
deployed spacecraft. In addition to simulating the operation of the completed satellite system, a
simulator can be designed to emulate the performance of key components. In this manner, it is
possible to provide a stable testing platform with which to take both individual components and
fully assembled subsystems from initial design to final implementation stages.

The Petite Amateur Navy Satellite (PANSAT) project at the Naval Postgraduate School
in Monterey, California, will ultimately result in the deployment of a spacecraft in low-Earth
orbit. An additional project underway involves the development of a PANSAT simulator. This
simulator has been constructed using actual components, components designed specifically for
the simulation, readily available standard components, and components that are functionally
equivalent to actual components. In addition, a personal computer (PC) and a software program
called LabVIEW have been used to create a capable and compatible simulator of PANSAT
operations.

There are three main advantages to evaluation of components through simulation. First,
evaluation of a completed component’s performance within the total system is made possible by
simulation of those components which are unfinished at the time of evaluation. Second, data on
performance is easily monitored by the user at the computer terminal and can be presented in a
format most suitable to the intended use. Third, the simulator is capable of simulating external
factors that are encountered in the intended operating environment.

The purpose of this thesis is to describe the development of the simulator’s Digital
Control Subsystem (DCS) and Electrical Power Subsystem (EPS) interfaces. In the principal
laboratory work for this thesis, these user interfaces were assembled using LabVIEW's graphical

programming code. The result was the creation of an easy-to-use, graphical user interface for
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controlling and monitoring the output from the PANSAT simulator. The DCS and EPS
interfaces will be used as a basis for further simulator development and as a platform to conduct
testing of completed satellite components and subsystems.

Once a satellite is launched, information on performance can only be obtained through a
communications link. In simulated operations, the various components and subsystems
employed in the satellite can be incorporated in the simulator as they are completed. This allows
for constant feedback on performance throughout the development of a satellite, and gives the
designers an opportunity to react to simulated operations before the system is actually deployed.
Throughout this work, various components of PANSAT and the simulator are mentioned. Such
references and descriptions are intended to provide the reader with a frame of reference within
which to examine development of the DCS and EPS interfaces, and should not be viewed as
comprehensive references for the simulator or PANSAT itself.

Chapter II discusses the objectives and components of the PANSAT project and
specifically examines PANSAT’s Digital Control and Electrical Power Subsystems. Chapter III
introduces the PANSAT simulator and its component subsystems. Chapter IV presents the
results of laboratory work performed in conjunction with this thesis. The chapter begins with a
review of the LabVIEW program, followed by a description of the development of the simulator’s
Digital Control Subsystem and Electrical Power Subsystem interfaces. Chapter V offers
conclusions and recommendations, including steps to be taken to accomodate anticipated

changes in the simulator's configuration.
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II. THE PETITE AMATEUR NAVY SATELLITE (PANSAT)

A. OVERVIEW

PANSAT is a small, spread-spectrum, store-and-forward communication satellite
under development at the Naval Postgraduate School (NPS), Monterey, California. The
PANSAT project was originated at the NPS by the Space System Academic Group
(SSAG) to fulfill the following objectives: (1) provide practical, hands-on experience to
NPS graduate students in all aspects of design, testing and operation of a small, digital,
spread-spectrum, store-and-forward communication satellite; (2) demonstrate a low-cost
spread spectrum system; (3) provide a compatible system for use by the amateur radio
community.

Store-and-forward satellites allow asynchronous communications, as illustrated in

Figure 1. PANSAT is designed to employ a spread spectrum, binary-phase-shift keying

Figure 1: Store-and-forward Satellite
Communication System [Ref. 1: p. 12].
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(BPSK) modulated, store-and-forward, direct sequence UHF packet communication
system with a center frequency of 436.5 Mhz, a bandwidth of approximately 2.5 Mhz, a
data rate of 9842 bits per second, and a message storage capacity of four megabytes. The
system is intended to have a mission life of two years.

PANSAT is comprised of three main spacecraft subsystems that perform electrical
power, digital control, and communications functions. The satellite will be made of
aluminum and will weigh 150 pounds, with an approximate diameter of 19 inches. The
exterior of the satellite is composed of 18 squares, 17 of which are equipped with solar
panels, and eight triangular plates. Four dipole antennas are attached in a tangential
turnstile configuration to four of the triangular plates. Inside the satellite are two battery
boxes, the Electrical Power Subsystem (EPS), the Communications Subsytem (COMM),
and the Digital Control Subsystem. The satellite will be free-tumbling, having no attitude
control or propulsion systems. [Ref. 1: p. 14]. The spacecraft’s configuration is
illustrated in Figure 2 and a block diagram illustrating the connections between the
various satellite subsystems is presented in Figure 3. In this figure, digital signal
connections, analog signal connections, and power connections are represented by thin,
dotted, and thick lines, respectively.

PANSAT is scheduled to be launched into a low-Earth orbit in early 1997.
Significant project milestones are plotted in Figure 4. A Get Away Special (GAS)
canister will house the satellite on board the Space Shuttle. A small satellite launcher,
built by Defense Systems, Inc. (DSI), will be used to push the satellite into orbit [Ref. 3:
p. 5]. A typical orbit will have an altitude of 480 km at a 28.5° inclination, providing an
average window time of six minutes for communication [Ref. 4: p. 1].

Once PANSAT is placed in orbit and a software uplink is established, the user
will be able to send messages, receive messages that have been stored on-board the

satellite, upload and download files, and read spacecraft telemetry. Through the use of
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Figure 2: PANSAT Configuration [Ref. 2: p. 3].

sophisticated protocol software, multiple users will be able to establish synchronous
communications links with the satellite on a single communication channel [Ref. 5: p. 4].
To communicate with PANSAT, a ground station must have a personal computer,
a Terminal Node Controller (TNC), a PANSAT-specific spread spectrum modulator-
demondulator (modem), and radio transmission and reception equipment. Application
software for an easy-to-use interface that includes telemetry encoding will be made
available by the NPS [Ref. 4: p. 2]. This software will be 100% compatible with the
Surrey Satellite Technology Limited (SSTL) store-and-forward software widely used by

the amateur radio community.

B. THE DIGITAL CONTROL SUBSYSTEM (DCS)

The primary functions of the DCS are to provide control of the EPS, control and
operation of the COMM payload, to gather and store telemetry data, and to perform
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Figure 4. PANSAT Milestones [Ref. 2: p. 5].

memory management and control for message handling [Ref. 4: p. 3]. Figure 5 is a block
diagram of the DCS. Digital signal connections are represented by thin lines, analog
signal connections by dotted lines, and power connections by thick lines. The DCS is
fully redundant, consisting of System Control Boards A and B (SCA and SCB), the
analog multiplexers (AMA and AMB), and the mass storage units (MSA and MSB). Ifa
failure should occur on one of the DCS’s paired components, such as the AMA, a control
board switching procedure is invoked to deactivate the failing component, in this case the
AMA, and activate the redundant unit, in this case AMB.

Within each of the System Control Boards (SCA and SCB) are the following main
components: The M80C186XL microprocessor, the Serial Communications Controller
(SCC), the LM12454CIV analog-to-digital converter (A/D C), the 82C55 Programmable
Peripheral Interface (PPI), the PA-100 Spread Spectrum Demodulator, an error-detection-
and-correction (EDAC) random access memory (RAM), and 32K of programmable read-

only memory (PROM). Figure 6 illustrates these components and their connections.
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System Control Board

LM 12454| <+— [TMUX]

M80C186XL | > [AD Conv | . [Eps]
Mmicroprocessor| o >
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DCS RS{232
P <«——» | SCC
c —|EDAC

PA-100 ><——-—> ... |PCB] .

Figure 6: PANSAT System Control Board.

The M80C186XL microprocessor is responsible for handling all software
activities within the spacecraft. It contains an enhanced 80186 instruction set, an
interrupt control unit, a timer/counter unit, a chip select unit, a bus interface unit, and a
two channel Direct Memory Access (DMA) [Ref. 7: p. 3]. The Serial Communication
Controller (SCC) transfers digital data streams between the M80C186XL microprocessor
and the PA-100. The microprocessor’s two DMA channels are dedicated to interface
with Channel A of the SCC in the synchronous mode. One DMA channel is for incoming
and outgoing message traffic, while the other is used for Error Detection and Correction
(EDAC) random access memory (RAM) wash. Channel B of the SCC is the PANSAT's
asynchronous serial test port. The LM12454 analog-to-digital converter accepts four
separate analog inputs from the multiplexer and provides one digital output to the
microprocessor. It interfaces directly with the M80C186XL microprocessor chip as an

I/0 addressed peripheral [Ref. 7: p. 4]. The 82C55 Programmable Peripheral Interface
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(PPI) is the interface between the M80C186XL microprocessor and the Peripheral
Control Bus (PCB). This interface enables the System Control Boards (SCA and SCB) to
communicate with and control components connected to the PCB. The PA-100 Spread
Spectrum Demodulator, manufactured by PARAMAX®, interfaces between the RF
analog portion of the satellite and the SCC. Its main function is the conversion of the RF
analog signal to a digital signal for further processing within the microprocessor. PN
code acquisition is also performed by the PA-100. Error Detection and Correction
(EDAC) circuitry controls the System Control Board’s random access memory (RAM).
The EDAC is designed to correct single bit errors and indicate double bit errors [Ref. 7:
p. 9]. The 32K PROM is directly connected to the microprocessor. It contains the
programs that will bring the system online after the satellite is placed in orbit.

The analog multiplexers (AMA and AMB), also called the “temperature mux”
(TMUX) due to their handling 90% of temperature signals, are directly connected to the
LM12454 analog-to-digital converter via dedicated analog cables.

The two Mass Storage Units are connected to the microprocessor via the PPI and
PCB. Four megabytes of memory have been allocated for each of the units, which will
provide file storage for spacecraft software, user messages, and telemetry.

The Peripheral Control Bus (PCB) connects all subsystems of the spacecraft.
Through the use of read and write commands, control and data flow transfer over the
components connected to the PCB is orchestrated by the System Control Board. Table 1

lists the eight subsystems connected to the PCB. Currently defined PCB addresses are

listed in Appendix C.
C. THE ELECTRICAL POWER SUBSYTEM (EPS)

The primary function of the EPS is the generation and distribution of power to
other subsystems in the satellite. Additionally, the EPS performs battery charge

regulation (trickle, recondition, charge), multiplexes voltage and current points, and
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Subsystem Name

RF Subsystem

Electrical Power Subsystem

System Control A

System Control B

Analog MUX A

Analog MUX B

Mass Storage A

Mass Storage B
Table 1: Subsystems on PCB.

gathers internal temperature measurements. Power is supplied by the EPS to other
subsystems along power lines on the PCB, and is controlled by the DCS through the PCB.
Current and voltage readings are gathered in the EPS and then sent to the analog-to-
digital converter located in the DCS. Temperature sensors located in the EPS send
measurements to the TMUX, where they are passed on to the analog-to-digital converter
in the DCS. Readings from the DCS’s analog-to-digtal converter are sent to the
microprocessor, where decisions are made regarding the regulation and conditioning of
power in the EPS. The DCS sends instructions back to the EPS via the PCB, directing
which EPS switches are to be enabled or disabled to regulate and condition the power.
Figure 7 is a schematic diagram illustrating the flow of information to and from the EPS.
The EPS is composed of 17 solar panels, redundant nickel-cadmium Batteries A
and B, a watchdog timer, temperature sensors, voltage and current muxing, power
regulation and conditioning circuitry, and a launch switch that activates spacecraft startup

procedures upon deployment. These components are depicted in Figure 8.
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DCS

EPS
Current & Voltage Mux
Sensors
Temperature » TMUX
Sensors
Control and
Regulation &
Circuitry

Figure 7: EPS Sensor Data Flow and Circuitry Control.

The 17 solar panels symmetrically cover the spacecraft, providing an average area
of approximately 989 cm*. Each panel is composed of 32 individual 1.92 x 4.00 cm
silicon cells, chosen for their low cost and ability to provide ample power for spacecraft
operations, connected in series. The panels were fabricated by Sectrolab, Inc., of Sylmar,
California, using the K6700 silicon cell with back surface field and reflector (BSFR)
[Ref. 4: p. 3]. '

Nickel-cadmium (NiCd) batteries were selected for use in PANSAT’s EPS on the
basis of their high energy density, cycle life, and excellent record of performance. Two
different ratings of NiCd were considered: space-rated and terrestrial-rated. The space-
rated variety is specifically designed for use in space, and is considered the most reliable,
but is prohibitively priced -- each battery would cost $100,000. Terrestrial-rated cells, on
the other hand, cost $10,000 each, and have been successfully used in space. The
PANSAT project will utilize a total of six of the latter; four flight and two prototype 12
volt batteries will be produced. It is anticipated that the batteries may be depleted beyond

viable levels of operation upon deployment from the Space Shuttle. While the spacecraft

12
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is operating in sunlight, however, trickle charging of the batteries will occur. Once
workable voltage levels are reached in the battery cells, the other subsystems will begin
to power up.

Three types of sensors are necessary for the EPS to regulate and condition power
throughout the satellite. Current sensors will monitor solar panel and battery charge and
discharge. Using specially designed precision resistors for current sensing, these sensors
will determine PANSAT’s orientation and roll rates by monitoring the currents of eight of
the solar panels. Voltage sensors will monitor Batteries A and B, the PCB, and all of the
solar cells, in accordance with a suggestion by the Naval Research Lab. Twenty voltage
measurement points will be muxed in the EPS, allowing monitoring of all of the solar
cells. Two temperature sensors will be located on each of the two battery cells.
Temperature sensing diodes have been chosen for their linearity and accuracy. The
addition of a differentially ended temperature sensor to each battery cell is still being
contemplated by the project staff [Ref. 8: p. 8].

The watchdog timer consists of a CD4060BMJ-MIL 14 bit ripple carry binary
counter, “flip-flops” and logic gates, a capacitor, and resistors. The watchdog timer
allows control of the satellite to be regained if the active System Control Board (SCB)
locks up. Each minute that the SCB is functioning properly, it sends a signal to the
watchdog timer that resets the timer to zero; if the SCB has malfunctioned, no signal is
sent. When the watchdog timer reaches six minutes, power to the active SCB is

discontinued, and power is routed to the alternate SCB.
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III. THE PANSAT SIMULATOR

A. OVERVIEW

The simulator’s physical configuration will eventually be identical to that of the
satellite. At this time, however, neither the Electrical Power Subsystem (EPS) nor the

Communication Subsystem (COMM) is connected to, or functioning on, the embedded

system. The operation of those two subsystems was not essential to the development of

the DCS interface, illustrating the user’s ability to evaluate completed components

without the benefit of a complete and fully operational system. Figure 9 shows the

eventual configuration of the simulator’s subsystems, while Figure 10 illustrates how

additional PC inputs are incorporated to simulate the EPS and COMM Subsystems.

PANSAT MICROPROCESSOR CONTROL AND MONITOR

AMUXA

R

PERIPHERAL CONTROL BUS

I R$-232

| 7l sca

| ||

g RF (PCB)
LabVIEW | —l |

} R$-232 SCB

|

|

EPS

AMUXB

Figure 9: PANSAT Simulation Configuration.

15




Solar GPIB

PANSAT SIMULATOR BLOCK DIAGRAM

N/

Simulator
Control

Microprocessor RS-232
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and Battery
Equipment Simulator

Control and
Monitor

RF GPIB

PANSAT

N4

Simulator
Control

PC's running
LabyIEW

RF Environment
Simulator

Channel fading, random
noise, Doppler shift,
raulti-path, etc.

Figure 10: PANSAT Simulator Block Diagram.

Use of the simulator will allow:

1. subsystem developers to test the functionality of designed components

while the other system components are yet incomplete;

2. prelaunch testing of protoboard design;

3. pretesting of possible configuration changes to the spacecraft after it has

been launched;
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4. analysis of particular circumstances that the satellite may encounter while in

orbit;

5. duplication of previously encountered circumstances for real time analysis,

and;

6. student exposure to a powerful educational tool.

B. THE DIGITAL CONTROL SUBSYSTEM (DCS)

Functionally, the simulator’s DCS is the same as that of the spacecraft.
Simulation of DCS operation was accomplished using the Space Thermal Acoustic
Refrigerator’s (STAR) System Control Board. Additionally, the embedded systemr’s DCS
is composed of the Peripheral Control Bus (PCB), and one analog multiplexer. The PCB
is identical to that used in PANSAT. At present, however, there is no redundant
capability in the simulator’s DCS, the analog multiplexer is still undergoing testing, and
there is no mass storage unit connected to the simulator. These differences had no effect
on the development of the DCS interface. Figure 11 illustrates the configuration of the
connection for microprocessor control of the PANSAT simulator.

The STAR System Control Board is less sophisticated than PANSAT s System
Control Board, but fulfills the same functional purpose. The STAR System Control
Board consists of several components. The 8088 Microprocessor is used in place of
PANSAT’s M80C186XL, the Universal Asynchronous Receiver/Transmitter (UART)
8252 is used in place of PANSAT’s Serial Communication Controller, and the HP3478A
multimeter fulfills the function of PANSAT’s LM12454 analog-to-digital converter.
Unlike the .M12454, which has four separate analog inputs from the multiplexer, the
HP3478A multimeter accepts only a single analog input. This difference can be
compensated for by stacking four multimeters on top of one another and feeding the four

separate analog inputs into a corresponding multimeter (resulting in an analog-to-digital
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Figure 11: PANSAT Microprocessor Control Connection.

conversion outside of the control board’s physical configuration).

Digital output to the simulator PC is provided via the General Purpose
Interface Bus (GPIB), which also provides the interface for PC control of the HP3478A
multimeters. As in PANSAT, an 82C55 Programmable Peripheral Interface (PPI) is used.
To allow it to function properly, however, the STAR System Control Board was modified
(most notably, the hardware handshake lines were connected). Additionally, the
simulator does not currently employ a PA-100 Spread Spectrum Demodulator, although
design detail and integration into the embedded system is currently uhderway.

There is 16K of read only memory (ROM) and 64K of random access memory
(RAM) connected directly to the microprocessor on the STAR System Control Board.
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The ROM is used to store the software necessary to intialize the electronics and maintain
the serial link that allows commands and data to be passed from the user to the embedded
system. The RAM is used to store the data that allows interaction between the user and
the embedded system, and also allows new software to be uploaded via the embedded

system’s RS-232 port and run in place of the software in ROM.
C. THE ELECTRICAL POWER SUBSYSTEM (EPS)

The simulator EPS is functionally the same as that of the spacecraft. It is
intended that power use duty cycles will be éxamined and testing on best and worst case
eclipse percentages will be performed to test EPS response. The eventual physical
configuration of the simulator EPS will be identical to that of the spacecraft’s, except that
the simulator will not incorporate solar panels, which will be simulated by an HP6653A
Power Supply. Figure 12 illustrates how the system will simulate the generation of
power in a regular orbit cycle. Prototype NiCd batteries will be integrated into the
embedded system once they arrive from the manufacturer, making it possible to test their
performance. Until then, 12 volts of power is being provided to the DCS and PCB by an
HP6216A DC Power Supply. The simulator will also employ the same current, voltage,
and temperature sensors as found in the spacecraft. Temperature sensors are currently
undergoing testing. Until then, measured voltage and current are being read by the
HP6653A Power Supply and the various multimeters employed in the simulator. A
watchdog timer identical to that on the spacecraft is currently operational on the

embedded simulator system, connected to the PCB.
D. THE COMMUNICATIONS SUBSYSTEM (COMM)

Once the PANSAT Control Board replaces the STAR Control Board, the

implementation of the Communications Subsystem within the rest of the simulator can
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begin. Until then, the operation of COMM is achieved using a PC with a GPIB and

readily available equipment, as shown in Figure 13.

PANSAT SOLAR SIMULATOR

GPIB Programmable| Solar Environment and
Power Battery Response
Supply Simulation

Solar Environment Description Tables
Control the programmable power
supply to simulate orbit.

PANSAT

Figure 12: PANSAT Solar Simulator.

PANSAT RF SIMULATOR

Signal Doppler Attenuator| | Random
Generator Shift Noise
Generator
1 1 1 T
GPIB ”

RF Environment Tabl
Control the various

GPIB instruments to
simulate the RF link.

Figure 13: PANSAT RF Simulator.
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IV. INTERFACE DEVELOPMENT

A. LABORATORY VIRTUAL INSTRUMENT ENGINEERING
WORKBENCH (LabVIEW)

Graphical programming uses graphic symbols rather than text to create and
describe algorithms. These symbols are connected within block diagfams to carry out
specific functions, allowing the user with little programming experience to develop
complex programs. Symbols, terminology, icons, and ideas are expressed in a format

familiar to scientists and engineers.
1. LabVIEW

LabVIEW is a software package that uses graphical programming language to
create what are known as virtual instruments. A virtual instrument (V) is actually a
LabVIEW program that has the appearance and operational characteristics of a real
instrument when displayed on a computer monitor. Each VI program includes a front
panel, a block diagram, and an icon and connector. Additionally, LabVIEW has
extensive libraries containing functions and subroutines for most programming tasks,
including data acquisition and instrument control, and is equipped with trouble-shooting
tools such as break points, single-step through, and impulse step through.

The front panel is the portion of the program with which the user interacts, and is
pictured in Figure 14. The front panel simulates the panel of a physical instrument, and
can be designed to suit the user’s preferences. Knobs, push buttons, graphic displays,
terminal screens, and other controls and indicators can be simulated in a VI, while data or
commands are input via computer keyboard or mouse. The block diagram utilizes the
graphic Programming Language G to express instructions, as shown in Figure 15. Note
that VI Volt Read is considered a subV1 located within the VI Digital Thermometer.

Block diagrams are similar in appearance to the circuit diagram of an instrument, with
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Figure 14: Front Panel for VI Digital Thermometer.
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Figure 15: Block Diagram for V1 Digital Thermometer.

data flowing between each function through the lines that connect them. Block diagrams
represent a pictoral solution to a programming problem, and are the source code for the
V1. The icon and connector of a VI depicts a graphical parameter list, as shown in Figure
16. The VI is graphically represented by the icon, while the connectors represent its input

and output terminals; data flows between VIs via the connectors shown on an icon.
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Mode ﬂTi‘mF Termperature

Digital Thermometer.vi

This ¥l simulates acquiring temperature data
one value at a time from a plug-in data
acquisition board. It uses the Demo Fead
Yoltage sub¥l to acquire this simulated data.
You can also select whether the temperature is
displayed in degrees Fahienheit or-degrees
Centigrade.

Figure 16: Icon and Connectors for VI
Digital Thermometer.

2. Serial Port Communication

Communication between the PC and the Digital Control System (DCS) is
accomplished through the use of the simulator’s serial port. In developing the DCS interface,
it was essential to identify suitable VIs for serial port control. Several of these VIs are
discussed below [Ref. 9: pp. 4-1-4-6].

The VI Open Serial Driver is used to initialize a selected serial port, and is included
as a subVI in each of the following descriptions. The icon and connectors for Open Serial
Driver are pictured in Figure 17. The connector shown to the left of the icon is a control,
where input is determined by the user. The connectors on the right are indicators, and show
results following execution of the VI. If an input error had occured, for example, the error
would be shown on the input error connector. It is standard in LabVIEW for control
connectors to appear on the left and indicators on the right. The VI Bytes at Serial Port,
shown in Figure 18, determines the number of bytes in the input buffer of the serial port, and
is a subVI of Serial Read and Serial Read with Timeout. Figure 19 shows the icon and
connectors for Serial Port Write. Note that strings written to the computer are input on the

connector labeled “string to write” and sent out over the designated serial port. Shown in




Figure 20, the VI Serial Port Read returns the number of characters that the “requested byte
count” connector specifies. Serial Read with Timeout reads the requested byte count (unless
a timeout condition is met first), as shown in Figure 21. A timeout error is indicated by the
“Timeout” connector if the requested bytes do not arrive at the serial port buffer before a

specified time.

input refnum
L input errar

% output refrum
output error

Open Serial Driver.vi

part humber

Figure 17: Icon and Connectors for VI Open
Serial Driver.

butte count

— enor code
Bytes At Senal Port.vi

port humber

Figure 18: Icon and Connectors for VI Bytes at
Serial Port.
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port nurnber
string to wnte
Serial Port Write_vi

errar code

Figure 19: Icon and Connectors for VI Serial
Port Write.

port nurmber string read

requested byte count [ error cods
Serial Port Read.vi

Figure 20: Icon and Connectors for VI Serial
Port Read.

Port Number SERIAL Senal Read
Timeout Limit - feah [ ~ Timeout
Bytes to Read — fee Eror Dut

Senal Read with Timeout. vi

Figure 21: Icon and Connectors for VI Serial
Read with Timeout.
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3. General Purpose Interface Bus (GPIB)

The GPIB is an interface system through which the interconnected electronic
devices of the simulator communicate. The GPIB is used to provide simultaneous
computer control of test and measurement instruments such as the HP3478A multimeter,
the HP6653A power supply, and the HP 6060A electronic load. At this time, the
multimeter is being used as an analog-to-digital converter. The power supply simulates
the solar panels and the electronic load simulates loads applied to the EPS by satellite
operation.

An IEEE 488.2 industry standard AT-GPIB board was installed in the simulator
PC, and NI-488.2 software was installed on the PC’s hard disk drive under the AT-GPIB
directory. During the installation process, the line “device-\at-gpib\gpib.com”, which
activates the AT-GPIB driver each time the PC is started, is inserted in the systems
"config.sys" file. For more information on the GPIB and NI-488.2 software, see
References 10 and 11.

There are two GPIB VIs that are prominent in the operation of GPIB controlled
devices. GPIB Write writes commands to the addressed device. As shown in Figure 22,
“address string” is the address of the device being written to, “data” is the command
string being sent to the addressed device, “mode (0)” indicates how to terminate the GPIB
Write, with a default mode of “0”, “timeout ms ...” is the time allowed to complete the
operation, with a default value of “488.2 global” (if operations are not completed in the
specified time, operations cease), and “status” indicates the GPIB controller status after
the write operation. The icon and connector for GPIB Read is pictured in Figure 23. In
this VI, “address string” identifies the address of the device to be read, “byte count”
identifies how many bytes the user wants read, and “data string” is the data that is read
from the specified device. The contents of the data string are determined by the write

command that the user has given the addressed device prior to executing the read
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command. Termination of this VI occurs when any one of the following events occur

[Ref. 12: pp. 8-10]:

1.

(98]

The number of bytes requested by the user is met

. An error is detected

The specified time limit is exceeded
The end of message character is detected

The end of string character is detected

timeout ms [488.2 global —————
address string o &
datg ~ 3 status

mode (0] —
GPIB Write_vi

Figure 22: Icon and Connectors for VI GPIB
Write.

timeout ms [468.2 global) ————
address string ey g data string
byte count —— Lo Sh
mode [0] __,-—-—Iél status
GPIB Read.vi
Figure 23: Icon and Connectors for VI GPIB

Read.
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B. DCS INTERFACE

1. Ground Level Protocol

Communications are transmitted through the serial port in packets. A packet
consists of a flag byte, two length bytes, data of user-determined length, and two check
sum bytes for cyclic redundancy check (CRC), as illustrated in Table 2 “Flag”, 7E
hexadecimal, identifies the beginning of the packet, “Lenl” and “Len2” together
represent the length in bytes of the data field, “Data” is the actual message or command to
be executed, and “CRC1” and “CRC2” are used together to determine if an error in
transmission has occurred. The peculiar order of “Lenl” and “Len2” is due to the byte
ordering of the Intel 80186 architecture where the low byte always proceeds the high
byte. The VI used to format a message as shown in Table 2 is called Send, while a
separate VI, RCVR, is used to reverse the process and perform an error check on data
coming back to the PC from the embedded system. For the code and a brief description

of Send and RCVR, see Appendix A.

Flag Leni Len2 Data CRC1 CRC2

(1 byte) (least significant byte) (most significant byte) (user determined) (1 byte) (1 byte)

Table 2: Serial Port Packet.

Within the “data” field is the “command data” field, which occupies the first two
bytes in the data field and is logically handled in the order shown in Table 3, where each
column is a nibble, or four bits, in length. Table 4 illustrates the order in which the
command data field is actually received by the microprocessor. The unusual order,
known as Little Endian, is due to the 80186 architecture. Table 5 shows the meaning of
each bit within the data field flag. For a command being sent out from the
microprocessor, the most significant bit of the “data field flag” is set. For a command

received into the microprocessor, this bit is zero. The second bit in the data field flag is
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an error bit, signifying an error if it is set. The third and fourth bits of the flag data field
are undefined, reserved for possible future use. “Command 2”, “Command 1, and
“Command 0” in Tables 3 and 4 list the hexadecimal equivalent of the low level
commands processed by the system. Following the command data field is the data
representing the low level commands that are supported by the simulator. There are a
total of eight low level commands that are supported by the embedded system; their

hexidecimal equivalents range from 000 through 007.

Data Field Flag Command '2’ Command ’1’ Command 'O’

Table 3: Logical Order of Command Data Field.

nibble '0Y nibble ’1’ nibble '2’ nibble '3’
Command '2’ Data Field Flag Command '0’ Command '1’
{most significant) (least significant)

Table 4: Command Data Field.

Bit Position Function
_xxx (most significant bit) Command Send or Acknowledgement
X_XX Error
XX_X undefined
xxx_ (least significant bit) undefined

Table 5: Bits of the Command Data Field Flag Defined.
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2. Low Level Commands

Table 6 shows the low level commands currently employed in the simulator,

along with the syntax to be employed for each. The first column lists the command, the

second column lists the user syntax format, and the third column lists the corresponding

hexadecimal representation for the command. These commands are text-based, and are

entered into the embedded system by the user via the PC interface. The ranges of CPU

addresses and data fields employed are presented in Table 7.

Hexadecimal
Command User Syntax Representation
(12 Bits)

Memory Read (8-bit) R8 cpu_address 000
Memory Write (8-bit) W8 cpu_address data8 001
Memory Read (16-bit) R16 cpu_address 002
Memory Write (16-bit) W16 cpu_address data16 003
1/0 Port Read IN io_port 004
I/O Port Write OUT Jjo_port data8 005
PCB Read PCBR dev_address sub_address 006
PCB Write PCBW dev_address sub_address data8 007

Table 6: Low Level Commands.




Parameter Range (hex) Description
cpu_address 0 - FFFFF CPU address for the ROM and RAM
io_port 0- FFFF CPU VO Port
pcb_address 0-F Peripheral Control Bus Device Address
sub_address 0-3 Peripheral Control Bus Device-Subaddress
data8 0-FF 8-bit data value
datalé 0-FFFF 16-bit data value

Table 7: Address and Data Conventions.

“Memory Read (8-bit)” is used to read the contents of the specified CPU address
and to address the embedded system’s ROM or RAM, which will contain message, code,
data for code, and telemetry information. The command’s syntax to the DCS is shown in
Table 6; the information received back from the DCS is in the format R8 cpu_address
data8, where “data8” is the requested information, which can be separated and further
processed in the LabVIEW environment, and is one byte in length. “Memory Write (8-
bit)” is used to write eight bits of data to the specified CPU address. To verify that the
command was executed, the computer returns the command to the user in the same syntax
as it was received.

“Memory Read (16-bit)” and “Memory Write (16-bit)” both follow the same
conventions as the 8-bit commands above, except that the 16-bit commands read and
write 16, rather than ¢ight, bits of data. The LabVIEW interface makes the swap between
low and high data bytes that is necessitated by the architecture of the 80186, allowing the
user to send and receive the data in normal order.

“T/O Port Read” is used to read components connected to the 1/O ports of
the M80C186XL microprocessor. These components include the SCC, the PA-100, the
LM12454 A/D converter, the EDAC controller, and the PPI, which drives the PCB. The

information received from the DCS as a result of this command’s execution is in the
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format IN io_port data8, where “data8” is one byte in length. “I/O Port Write” is used to
write eight bits of data to the components with I/O ports on the microprocessor. The
microprocessor repeats the command back to the user to acknowledge that it has been
executed.

“PCB Read” is used to determine the status of components connected to the PCB.
Information is sent to the user from the DCS in the format PCBR dev_addres
sub_address data8. “PCB Write” is used to send control commands to the components
connected to the PCB. As with the other write commands above, the DCS repeats the

command back to the user to acknowledge execution.
3. Control

Each of the commands discussed above is executed from within a LabVIEW VI
called Control. The icon and connectors for Control are pictured in Figure 24 and the
front panel is presented in Figure 25, while Appendix A contains a block diagram of the
V1. In Figure 25, “Command String In” allows the user to type any of these low level
commands, at which time the system carries out the command and returns a response to
the “Command Repsonse”. Errors are indicated by the “Serial Write”, “Command”, and

“Response Error” buttons, which darken if an error occurs.

Part Nurber Corr ~~ Command Response
Command String In trol - Serial Write Eror
= Command Error
- Response Emor
control.vi

Figure 24: Icon and Connectors for VI
Control.




control.vi
perate Controls Windows Text

=] [ [Y (AlR][#]

FC: 0=COMI1,1=COM2,.T
Mac: 0 =kadem, 1 = Printer
gun: O=tpa, 1=thb,..

Figure 25: Front Panel for VI Control.

4. High Level Commands

The high level commands that are currently supported by the system are listed in
Table 8. As further needs are identified, more high level commands can be added. “Run”
will open a user created file that performs a series of low level commands. Such a user
file can be created using a text editor such as Microsoft® Notepad™ and stored in the
path “C:\pansat\simulato\run”. Useful in performing a series of commands that are
repetitive, lengthy, or often used, this command actually executes within the LabVIEW
environment, sending each individual command to the simulator’s microprocessor as a
single command line and storing each response for display to the user. User files are
handled from a VI called File Handler; the icon and connectors for File Handler are

pictured in Figure 26. For further information on File Handler, consult Appendix A.

|
(O8]




Brief Command Hexadecimal
Description User Syntax Representation
(12 Bits)

Run a File RUN filename 008

Wait (ms) WAIT time-in-ms 009

Enable Embedded System ENABLE : 00A
Disable Embedded System DISABLE 00B
Comment ; 00C

A/D Converter Read ADR ad_channel 00D

Table 8: High Level Commands.

List of Cormmands Out
Mo, Commands

File

‘hlacnd-
ler |

file handler.vi

Line Command In

Figure 26: Icon and Connectors for VI File
Handler.

“Wait” is a command used to pause system operation. As with “Run” above,
“Wait” commands are not issued to the simulator’s microprocessor, but are handled
directly by LabVIEW using the simulator PC’s clock. The time parameter for this
command is entered in milliseconds, and the command is not repeated back to the user
upon execution. The “Wait” command is administered through a VI called Multi-Wait,

pictured as an icon and connectors in Figure 27, and as a block diagram in Appendix A.




Coramand Sting In r&l{lltg No. Commands Out
No. Commands [?ns] List of Commands Cut
multi wait_vi

Figure 27: Icon and Connectors for VI Multi
Wait.

The “Enable” and “Disable” commands are used to activate and deactivate the
simulator’s microprocessor, respectively. These commands are repeated back to the user
to acknowledge execution. Useful in the development of the simulator interface, these
commands allow the LabVIEW software to be run without having the microprocessor to
send commands to the various simulator components on the PCB (disable mode). As
physical components are designed and implemented for testing, the microprocessor can
be activated (enable mode), allowing the components’ performance to be evaluated.
Another useful command is “Comment”, which allows comments to be attached to a file
or window. In accordance with common programming conventions, the comment is
inserted in the file or window preceeded by a semicolon. This command is administered
by the VI Comment Handler, pictured as an icon and connectors in Figure 28 and

described in more detail in Appendix A.

—— MNo. Commands Out

T
bl
=1}

No. Commands
Command String In

List of Cormmands Out

comment handler.vi

Figure 28: Icon and Connectors for V1
Comment Handler.




Eventually, the PANSAT System Control Board will replace the STAR System
Control Board, allowing the command “A/D Converter Read” to fuction through the
simulator’s microprocessor. An intermediary procedure has been developed to execute
this command through the GPIB and using a multimeter. The variable ad_channel is a
hexadecimal number ranging from “0” to “3” that represents the channel of the A/D
Converter to be read. When the PANSAT SCB is in place, data will be returned from the
microprocessor in the format ad_channel datal6. Meanwhile, readings from the
multimeter are réturned to the user through the GPIB and the use of a VI called ADR

Fake, which is pictured as an icon and connectors in Figure 28. For more information on

ADR Fake, see Appendix A.

ALR

fake | ADR Dut [0-4095)

adr fake.vi

Figure 29: Icon and Connectors for VI
ADR Fake.

The high level commands presented here are all run through a VI called Multi

Line Control, which is shown as an icon and connectors in Figure 30, and discussed in

further detail in Appendix A.

Fesponse
- Received Data
Commmand oo A fine’ F—LRECEIVED DATA ul6
ommand Sting or Fiie a1l L pCyVD DATA LENGTH
EOR- E"Uf

multi line control.vi

Figure 30: Icon and Connectors for VI Multiline
Control.




5. TSWEEP2

TSWEEP?2 is a VI application used to test the operation of the simulator’s TMUX.
Its front panel is shown in Figure 31, where the temperature array is plotted on the
“Graph Out” portion of the panel. To start the application, the user “clicks” on the arrow
button located in the upper left portion of the panel and waits for results to be displayed.

Figure 32 displays the block diagram for TSWEEP2. When the application is
started, the file “TMUX1" (see Figure 33) is run. This file contains a series of commands
specifying that sensors S-1 through S-16 be read, and employs the various commands,
such as “Enable”, “Comment”, “Wait”, “PCBW”, and “ADR?”, that have been discussed
thus far. The VI Multiline Control processes the information, sending each “PCBW?”
command to the simulator’'s TMUX. A “Wait” of 50 milliseconds then occurs, followed
by an “ADR” command. Using the GPIB to control the mulitmeter attached to the

simulator, voltage readings take place. Measurements are then sent to the VI Convert to

emperatures

1 12 15

Figure 31: Front Panel for VI TSWEEP?2.
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Celsius, where a conversion form voltage to temperature algorithm is employed, then the
readings are displayed on the front panel. These readings are then processed by the VI

Graph Array, where the data is plotted. Additional details on TSWEEP2 and its related
subVIs may be found in Appendix A.

Figure 32: Block Diagram for VI TSWEEP2.




=] Notepad - TMUX1.RUN

File Edit Search Help

enable

;Read THux S-1 through 3-16
351

pcbuw 6 6 88

pcbu 5 6 6
wait 50
adr 1

35-2

pcbw 6 B cC
pcbw 5 8 8
wait 5@
adr 1

:5-3

pcbw 6 @ a@
pcbw 5 8 8
wait 58

adr 1

:S-4

pcbw 6 @ eB
pcbw 5 8
wait 50
adr 1
;5-5
pcbw 6 8 98
pcbw 5 8 8

yait 50

Figure 33: Segment of Notepad File TMUXI1.




C. EPSINTERFACE

1. Power Supply Driver

The VI GPIBTEST was created to control the HP6653A Power Supply from the
simulator’s PC. The front panel for GPIBTEST is shown in Figure 34. For the VI to
operate, the power button shown in the upper left portion of panel must be in the “ON”
position. The power supply is set to a specified voltage and current by user manipulation
of the two controls in the upper right quadrant of the panel. The GPIB address for the
HP6653A is “6”, and the voltage and current measured at the power supply are displayed

in the labeled box and on the meter displays. Further information on the operation of the

HP6653 A may be found in Reference 13.

GPIBTEST.VI
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Alternatively, voltage and current measurements can be sent to the power supply through
a user file, such as a compilation of best to worst case scenarios of percent eclipse data.
This is accomplished by connecting the data to the “voltage” and “current” connectors
displayed in GPIBTESTs icon and connector display (see Figure 35). . Block diagrams for
GPIBTEST are presented in Appendix B.

POWER -~Ipower Yoltage
voltage - ISUPPlA-—- Cyment
current - L&

i~ Mieasured Voltage and Curren...
GPIB address
GPIBTEST.¥I

Figure 35: Icon and Connectors for VI GPIBTEST.

2. Load Driver

To test the operation of GPIBTEST, an electronic load was connected to the power
supply. The VI used to control the HP6060A Electronic Load was GPIBLOAD, which is
shown as an icon and connectors in Figure 36 and as a front panel in Figure 37. As
illustrated in the figure, the VI has three modes of operation: constant current (CC),
constant resistance (CR), and constant voltage (CV). Only the CC mode has been utilized
in testing thus far. As seen in the figure, the GPIB address is indicated as “5”, and
voltage and current readings are easily obtained. Block diagrams for this VI are located
in Appendix B, and further information on the operation of the HP6060A may be found

in Reference 14.
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resistance ;1 ERROA

Mode Load Voltage
PORT -~ “ Current
voltage - -~ MEas. res
current - teasured Voltage and Curren...

GPIB address
GPIBLOAD VI

Figure 36: Icon and Connectors for VI GPIBLOAD.

|File

Edit Operate Controls Windows Text Loadi

500 10.00 | 500 10.00

_ i 1500 0o . 15.00
anq(,f U | - w—w\ _;

Figure 37: Front Panel of VI GPIBLOAD.

In order to run GPIBLOAD to provide an electronic load and GPIBTEST to
observe the resulting measurements, a third VI, SUPLOD, was created. Figure 38
illustrates how this VI handles the inputs of mode, voltage, and current, and the resulting

measurements. For more information on SUPLOD, consult Appendix B.

42




pram ol [zupply] SLIPETY meas valk supply
praro cur [supply) - ID':Lu:I . MEEs Ul supply

- meas "."D“: |DE]1:|
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SUPLOD.¥VI

rnode —

Figure 38: Icon and Connectors for VI SUPLOD.

3. Control Panels

Three different VIs were designed to control different aspects of the EPS: battery
telemetry, system control and status, and roll rate and attitude. EPS Battery Telemetry is
shown as an icon and connectors in Figure 39, and is intended to provide the user with a
simple to read panel for monitoring the status of the batteries. Development of this VI is
still ongoing, and will continue following the arrival and installation of the system’s
prototype batteries. The front panel for EPS Battery Telemetry is pictured in Figure 40,
where “Graph Out” is a plot of voltage readings, “Temperature” graphically represents
the temperature readings, and “Trickle”, “Charge”, and “Discharge” buttons indicate to
the user the current state of battery operation. Note that data is to be collected on each of

10 cells in both batteries.

g — TEMPERATURE
Mo, [terations iet|.3m. A YOLTS
et .~ TEMP
T Lwn WOLTS
B TE R P
EPS Battery Telemetry. vi

Figure 39: Icon and Connectors for VI EPS Battery
Telemetry. '




File Edit Operate Controls Windows Text fem-

] N 4

Figure 40: Front Panel for VI EPS Battery Telemetry.

Figure 41 presents the VI EPS Subsystem On/Off as a front panel. Power to each
of the simulator’s subsystems is controlled from this panel. To turn a specific subsystem
on or off, the user clicks the appropriate switch in the top half of the panel. The paired
components have been installed to allow only one to be turned on at a time, and the user
is informed that turning off DCS A or B will result in a reset of the entire system. Below
the on/off toggle switches are system status buttons, which indicates which subsystems
are actually being provided with power. This VI is presented as an icon and connectors

in Figure 42, and as a block diagram in Appendix B.
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Eight solar cells on each of eight solar panels will contain a current sensor. These
sensors will be distributed in such a manner as to allow the satellite’s roll rate and attitude
to be calculated. The VI EPS Roll Rate/Attitude is being created to receive the sensor
data and graphically express it to the user; it is shown as a front panel in Figure 43, as an
icon and connector in Figure 44, and can been seen as a block diagram in Appendix B.
As with some of the software components discussed above, final design implementation

of EPS Roll Rate/Attitude is being delayed pending the arrival and installation of the

prototype batteries.

EPS Roll Flate.-'.&ttltude vi o

rall
rated s
ttltude

Currentx’w’oltage File Mg Recerved Data

Figure 43: Front Panel of VI EPS Roll Rate/Attitude.
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The VI IV File Solar Simulator uses a current and voltage (IV) file to retrieve data
and provide the user a platform upon which to analyze the operation of the batteries. The
IV file can contain anticipated or measured current and voltage values reported by the
batteries or the solar panels during one complete orbit. During eclipse, power is provided
from the batteries, and when the spacecraft is in sunlight the solar panels power the
system. Based on the information in these files, numerous orbits can be simulated to see
how the batteries respond. As shown in Figure 45, the user can enter the period of orbit
in minutes and seconds. The value of “Time Weighting ...” indicates the factor by which
time has been accelerated or decelerated: a value of two allows the user to simulate the
orbit in half the original time. Percent of completed orbit is also monitored during the
simulation, by means of the simulated analog gauge in the upper right portion of the
panel. Final design implementation of this VI component is also awaiting the arrival and
installation of the prototype batteries. The block diagram for /V File Solar Simulator

may be found in Appendix B.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis has described the development of the PANSAT simulator’s Digital
Control Subsystem (DCS) and Electrical Power Subsystem (EPS) interfaces. Where
practical and informative, the discussion has included references to and descriptions of
various components of both PANSAT and the simulator, both of which are still in
development. The specific laboratory work herein described was concerned exclusively
with the development of interface controls for the simulator’s DCS and EPS Subsystems.

LabVIEW has been demonstrated to be an easy-to-use and effective programming
tool in the development of PC based interfaces. Through the use of Virtual Instruments
(VIs), the user is presented with easy-to-use digital readouts and graphical
representations of the measured performance of simulator components. Additionally, VIs
are useful in controlling peripheral devices that simulate as yet incomplete or uninstalled
components. In ongoing testing of the simulator's TMUX, for instance, the interfaces
described in Chapter IV have provided engineers with an efficient tool with which to
gather and interpret operational data.

There are several specific objectives to be achieved in further research. First,
switch configurations and addresses of all elements within the subsystems controlled
through the Peripheral Control Bus (PCB) must be identified, collected and organized.
Those addresses already identified are contained in Appendix C. Second, the STAR
Control Board currently used to simulate microprocessor operations must be replaced
with the PANSAT Control Board, which will allow an LM12454 A/D converter to
perform analog to digital conversions (as in PANSAT) and the integration of the
simulator's Communication Subsystem (COMM).

The DCS interfaces and VI displays discussed in this thesis are in place and
functioning within the embedded simulator system at the NPS, and they have been useful

in evaluating newly designed or installed system components. As new components come
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on line and existing components are revised, however, changes to the interfaces and VI
displays may be necessary.

The installation of the LM12454 A/D converter, for instance, will necessitate
changes in the programming code in the following manner. Command Response Cases
T must be modified to handle ADR commands to the microprocessor. Command
Response Cases block diagrams can be seen in Appendix A. Frame '13' of the block
diagram is the frame to be modified; the VI ADR Fake must be deleted. The array of u$
in, shown at the top of Frame 13, must first contain an 4rray Subset Function with a
starting index of 0 and a width of 1 byte. This byte, representing ad_channnel, should
feed into the Add Array Elements Function and then into the 7o Hexadecimal Function.
This string is then passed into the Build Array Function, following the 4DR element
already in place in Frame 13, and an equal sign must be inserted into the Build Array
Function following the ad_channel element. The array of u8 in should pass into another
Array Subset Function with a starting index of 1 and a width of 2 bytes. This should be
followed by the VI Change 2([u8]) to ul6, fed into the same set of functions described
above for the ad channel element, and added to the Build Array Function.

The PANSAT simulator, when complete, will present an ideal tool with which to
continue development of the operational PANSAT system. For the present, the

continuing design and construction of the simulator itself present graduate students with a

unique educational experience.
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APPENDIX A. SIMULATOR DIGITAL CONTROL SUBSYSTEM
(DCS) INTERFACE SOFTWARE CODE

Virtual instrument (VI) Multi Line Control handles all commands sent to the
DCS. Figure 46 shows supporting VIs (subVIs) for VI Multi Line Control. Appendix A,
Section A, contains the icon and connectors and block diagrams for the VIs shown in
Figure 46. A block diagram is the code for a program in the graphic G language, as
discussed in Chapter [V. A brief description of each diagram is included. Section B of

Appendix A contains block diagrams of TSWEEP2 VI and it's supporting VIs.

A. MULTI LINE CONTROL

VI Multi Line Control is supported by a number of subVIs. Each VI developed to
support Multi Line Control is briefly discussed below. Only VIs specifically built for the
DCS interface are discussed and shown below starting from the second row from the
bottom of Figure 46. The bottom row of Figure 46 contain VIs that initiate or activate the
General Purpose Interface Bus (GPIB) and Serial Port Communications. The General
Error Handling VI is also shown. For further information on these Vs developed by

National Instruments see References 9, 12, 15, 16.
1. Change ul6 to 2(Ju8]) VI

Starting on the second row from the bottom, left hand side of Figure 46 is the
Change ul6 to 2([u8]) VI This VI performs the function of swapping the high and low
bytes of a two byte number to fit the 80186 architecture required before it is sent to the

microprocessor. Figure 47 is the icon and connectors for Change ul6 to 2({u8]) VI.
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Figure 46: Supporting VIs for VI Multi Line Control.

DATA IN

ulb
-
2{[uB]

Array of ud Dut

change ulb6 to 2{[uB8]).»

Figure 47: Icon and Connectors for VI Change

ul6 to 2({us)).
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Figure 48 is the block diagram for VI Change ul6 to 2([u8]). The datais
received, divided by 256, then sent to an array building function with the remainder of the

operation being the first element and the quotient the second.

DATA IN
; Array of ug Out
R -
2 0 I | [T
256

Figure 48: Block Diagram for VI Change ul6
to 2([us)).

2. Simple Error Handler, Serial Port Read and Bytes at
Serial Port VIs

The icon and connectors for VI Simple Error Handler is shown in Figure 49 with
an explanation of the VI's function. Simple Error Handler VI, Serial Port Read VI and
Bytes at Serial Port VI, shown on the same line in Figure 46, were developed by National
Instruments. Serial Port Read VI and Bytes at Serial Port VI were discussed briefly in
Chapter VI. For further reading on Simple Error Handler, Serial Port Read and Bytes at
Serial Port VIs see the References 9, 12, 15, and 16.

error code (no error:0) Erron status out
error source [ ") Ky L code out

type of dialog (0K msg:1) f : %‘Msource out
error in [no emror) E Loemce er1or oUE

message

Simple Error Handler.vi

This error handler is used primarily to inform the user if an input
ertor exists, to describe the eror, and to identify where it
occurred. The information needed to do this is derived from
the inputs error cluster in, eror code, and erar source, and
from an interal error description table.

Figure 49: Icon and Connectors for VI
Simple Error Handler.
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3. HP3478A VI

The icon and connectors for VI HP34784 is shown in Figure 50. The
HP3478A VI was developed by National Instruments and is used by the DCS interface
software to control the HP3478 A multimeter from the PC. The multimeter is used to

perform analog to digital conversion as discussed previously in Chapter IV.

measurement
autorange -~
range [(30m¥:0)
trigger mode

-~ measurement

HP 3478A vi

Use: measure volts, amps, or ohras

Defaults: DC WYolts measurement, autorange, single tigger
mode

Assurnptions: DMM is at GPIB address 23, GPIB-MAC is
connected

Figure 50: ’con and Connectors for VI
HP34784.

Figure 51 is the 'false’ case, sequence '0' of the block diagram for VI HP34784.

Sequence '0" is the first action executed when this VI is activated. This sequence

§ SRQ on data avallable[M01] i .
| autozera(Z1).5 1/2 digit display. Build command string and
| greatest noise rejection and send it to multimeter

110 PLC integeration{N5] grotmene
T1] |
¥ U i I &
B
T T4
75
e

autorange

3 trigger mod -
& =l
=

Figure 51: Block Dzagramfor VI HP34 78A Sequence 0,
'False' Case.
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configures the multimeter, preparing it for taking measurements. The 'false’ case occurs
when the user chooses not to select the auto ranging mode.
Figure 52 is the 'true’ case, sequence '0' of the block diagram for VI HP3478A.

The 'true’ case is executed when the user chooses the auto ranging mode.

p ﬁléliﬂiiilﬁlﬁlﬁtﬁl@lﬁﬁ?lil’ili[‘:m:EII!Ii[ilililililii!l’!lﬁ]ﬁ!ilﬁli[!
SRQ on data available{M01),
autozero[Z1).5 1/2 digit display,
greatest noise rejection and
10 PLC integeration[N5)

Build command string and |;
send it to multimeter

Figure 52: Block Diagram for VI HP34784 - Sequence '0',
"True' Case.

Figure 53 is sequence '1' of the block diagram for VI HP34784. Sequence '1'

pauses operations until the multimeter indicates that measurements have been made and

are ready for reading.

Wait for RAS to indicate
that reading is available

L O S8 R AL 0 o R 0 A I i P o

Figure 53: Block Diagram for VI HP34784 - Sequence '1".
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Figure 54 is sequence '2' of the block diagram for VI HP34784. Sequence 2'

contains the code that performs the read operation from the multimeter through the GPIB.

Figure 55 is sequence '3' of the block diagram or code for VI HP34784.

Sequence '3' clears the multimeter, preparing it for future use.

Figure 55: Block Diagram for VI HP34784 - Sequence '3'.

For further reading on the operation and remote programming of the HP3478A

Multimeter, see Reference 17.
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4. Change 2([u8]) to ul6 VI

Figure 56 shows the icon and connectors for VI Change 2([u8]) to ul6. This VI
receives from the microprocessor two unsigned bytes of data that are in the 80186 format.
The high and low bytes need to be swapped and combined to be formatted into the form

that the user is used to.

2{[us]]
- .
Array of 2([uB]) In S

change 2[[u8]) to ulb.vi

array of ulb out

Figure 56: Icon and Connectors for VI Change
2({u8]) to ulé6.

Figure 57 is the block diagram or code that performs the VI Change 2([u8]) to

ul 6 function.

Array af 2{[uB]l In
[ve]

array of ulh oull

puss] |

Figure 57: Block Diagram for VI Change 2([u8])
to ul6.

5. Change 4([u8]) to u32 VI

Figure 58 shows the icon and connectors for VI Change 4([u8]) to u32. This VI
receives from the microprocessor four unsigned bytes of data that are in the 80186

format. The high and low bytes need to be swapped and combined to read out
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]
[u32]
change 4[Ju8]] to u32.vi

Arerayp of 4[us]) In array of w32 out

Figure 58: Icon and Connectors for VI Change
4([u8]) to u32. :

as one unsigned 32 bit number. The algorithm to accomplish this is shown in Figure 59,

the block diagram for VI Change 4([u8]) to u32.

1]

array of u3e out
5 [032]

=

L

Figure 59: Block Diagram for VI Change 4([u8]) to
u32.

6. Leading Space Stripper VI

Figure 60 is the icon and connectors for VI Leading Space Siripper. Leading
Space Stripper removes any leading spaces that the user may have inadvertently
typed into a command string sent to the microprocessor. Leading Space Stripper VI is

also used to strip off leading spaces that occur when strings are divided into components.
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String In String Out

i

leading space striper.vi

Figure 60: Icon and Connectors for VI Leading
Space Stripper.

The algorithm used to accomplish the Leading Space Stripper VI function is
shown in figure 61. Figure 61 is the block diagram for VI Leading Space Stripper.

abc

Figure 61: Block Diagram for VI Leading Space Stripper.

7. Change u32 to 4([u8]) VI

Figure 62 shows the icon and connectors for VI Change u32 to 4([u8]). VI
Change u32 to 4({u8]) transforms a 32 bit number into the 80186 architecture format.

This prepares the data for handling by the microprocessor.

U2
M I ata
DATA M 4181 Data Dut

change u32 to 4[([u8]]).vi

Figure 62: Icon and Connectors for VI Change
u32 to 4([u8]). .

59




The algorithm to accomplish this is shown in Figure 63, the block diagram for VI
Change u32 to 4([u8]). VI Change ul6 to 2({u8]) is shown in Figure 63 as a subVI of VI
Change u32 to 4({u8]).

- [F3TE]__[Data Ouf
g =283l [[vs]

2@'31 |

Figure 63: Block Diagram for VI Change u32 to 4({u8]).

8. ADR Fake VI

Figure 64 shows the icon and connectors for VI ADR Fake. VI ADR Fake was
previously discussed in Chapter IX under the recommendations section. VI ADR Fake

uses the General Purpose Interface Bus (GPIB) to control the HP3478 A Multimeter.

EGI ]
fake ADP Out (0-4095)
adr fake. i
Figure 64: Icon and Connectors for VI ADR
Fake.

Figure 65 shows the block diagram for VI ADR Fake. V1 HP3478, already
discussed above, is a subVI of ADR Fake VI. ADR Fake VI converts analog volt readings

to digital.
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Figure 65: Block Diagram for VI ADR Fake.

Figures 66 and 67 show the two variations to the condition boxes 'true' and 'false'
shown in Figure 65. Figures 66 shows the algorithm for the case when the reading is less
than zero. Figure 67 shows the case when the reading is less than five and greater than

Z€10.

200 ZPW# 2

{
H
}
5

pRRCRIE G I FE

%
:
!

v range,
Figure 67: Reading within Range.

Figure 66: Reading less than
zero.

Serial Read with Timeout VI is the next VI to be considered from Figure 46, but

because this VI was previously addressed in Chapter I'V, it will not be discussed now.




9. List of Commands VI

Figure 68 is the icon and connectors for VI List of Commands. List of Commands

VI lists all commands currently served by the simulator's Digital Control Subsystem

ISt of peessssea Commands Array Send

Comm
-ahds

List of Commands._vi

Figure 68: Icon and Connectors for VI List
of Commands.

(DCS) interface software. Commands that the user inputs are compared to this list to
determine if the command is valid. If the command is in the list, a 12 bit hexadecimal
number is assigned to the command that corresponds to its position in the list. Figure 69
shows the block diagram for VI List of Commands. List of Commands VI is a list stored

as an array. New commands can be easily added to the list.

Commands Array Send|
[Keep list in lower case.|

Wwhen adding to List of Commands the
followihg may also need modifications:

"Response Flag & Case Detect”

"Command Response Cases"

"Case Paket Select”

Figure 69: Block Diagram for VI List of Commands.

10. Case Paket Select VI

Figure 70 is the icon and connectors for VI Case Paket Select. Case Paket Select

takes a command string input by the user and transforms the string into the format that is
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acceptable by the microprocessor. Each of the 14 commands shown in Figure 69 of the

List of Commands VI block diagram has a corresponding case shown below in Figures

---------------------- Sddress/Data Out of Range ...

String In Case
Case Number — Dalket command string out
Command 2([ug]) In —— et

case paket select.vi

Figure 70: Icon and Connectors for VI Case Paket
Select.

71 and 73 through 81. Case numbers are located at the top of each of the boxes shown in
Figures 71 and 73 through 81. Figure 71 is the algorithm used to transform the Memory

Read (8-bit) Command into a format that is acceptable for processing by the

String In

Command 2{[ud]]In

[us] command string oul
A e v 0 mmzmmzmv [us]
........... gammwww —
- ; § Address/Data
% TP AR ; # 10ut of Bange
g Error

=
1

Flgure 71: Block Diagram for VI Case Paket Select Case
Number '0".

microprocessor. The algorithm combines into an array the hexadecimal equivalent for the
Memory Read (8-bit) Command and its 32 bit CPU address. This array string is output to
the indicator labeled command string out. The hexadecimal equivalent for Memory Read
(8-bit) is '0', corresponding with the case number shown in the block diagram of Figure

71. All Commands that follow, Figures 73 through 81, have a hexadecimal command




number that corresponds to it's case number. Additionally, the CPU address range is
checked to ensure that it is within the specified range. If the address falls within this
range, the case is considered true and the code shown in the 'true’ box of Figure 71 is
executed. If the address falls outside the predefined range, the case is considered false
and the code shown in the 'false’ box of Figure 72 is executed. For Figures 73 through
81, this code for the false case applies whenver input data is out of the specified range. If
an address falls outside the specified range, operations cease and an input error is
indicated to the user. If the address is within range, the address is passed through the VI
Change u32 to 4(Ju8]) This transforms the CPU address into the necessary format

(80186 architecture) for handling by the microprocessor.

Figure 72: 'False' Case
for Frames '0' through
13"

Figure 73 is the block diagram used to prepare the Memory Write (8-bit)
Command string for processing by the microprocessor. It's case number is '1', which
corresponds to the Memory Write (8-bit) Command's hexadecimal equivalent. The CPU
address range is checked and then passed through the Change u32 to 4({u8]) VI as 1t was
in the proceeding Memory Read Command. In addition, the Memory Write Command
contains the 8-bit data input which first has it's range checked for validity. Then the 8-bit

data is added to the output array indicated as command string out.
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String In|

Command 2{[ud]l In

command stiing out|
T e T

o A ddress/Data
» uf < ;’.j Out of Range
4([u8]) Eror
i E Ox

Flgure 73 Block Dzagram for VI Case Paket Selecl‘ Case
Number 'T".

Figure 74 is the block diagram used to prepare the Memory Read (16-bit)
Command string for processing by the microprocessor. It's case number is 2', which
corresponds to the Memory Read (16-bit) Command's hexadecimal equivalent. The CPU
address range is checked and then passed through the Change u32 to 4([u8]) VI. The
address is combined in an array with the command's hexadecimal number equivalent and

then indicated as command string out.

= [Address/Data
% [Out of Range
‘ Enror

.......... : %

Flgure 74: Block Dzagram for VI Case Paket Select Case
Number 2.
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Figure 75 is the block diagram used to prepare the Memory Write (16-bit)
Command string for processing by the microprocessor. It's case number is '3', which
corresponds to the Memory Write (16-bit) Command's hexadecimal equivalent. The CPU
address is passed through the Change u32 to 4([u8]) VI as it was for the Memory Read
Command. The Memory Write Command's hexadecimal number equivalent is combined
in an array with the 80186 formatted CPU address. In addition, the Memory Write
Command has the 16-bit data input that has it's range validated, then passes the 16-bit
data into the Change ul6 to 2([u8]) VI. This is then combined with the command's

hexadecimal number equivalent and CPU address in the output array indicated as

command string out.
Case Number Command 2([u8]} In|

[2b<]]

command string oul

% [vs]

hddress/Data
Out of Range
Error

|

Figure 75: Block Diagram for VI Case Paket Select - Case
Number '3".

Figrre 76 is the block diagram used to prepare the /O Port Read Command string
for processi:.2 by the microprocessor. It's case number is '4', which corresponds to the
I/O Port Read Command's hexadecimal equivalent. The CPU I/O port number is passed
through the Change ul6 to 2([u8]) VI. The I/O Port Read Command's hexadecimal
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number equivalent is combined in an array with the 80186 formatted CPU 1/O port

number. The output array is indicated as command string out.

Stiing In
Case Number| Command 2([u8]i In
:
command tring out

b SRR
% M n:i! Address/D ata
ig ul R ,’-é Dut Eo[frgange
> - “‘”“3]§
]@; : s
l:-'_oi'._ mmmwmm&%

Figure 76: Block Dzagram for VI Case Paket Select - Case
Number '4'.

Figure 77 is the block diagram used to prepare the I/O Port Write Command
string for processing by the microprocessor. It's case number is '5', which corresponds to
the I/O Port Write Command's hexadecimal equivalent. The CPU I/O port number is
passed through the Change ul6 to 2([u8]) VI as it was for the /O Port Read Command.
The I/O Port Write Command's hexadecimal number equivalent is combined in an array
with the 80186 formatted CPU I/O port number. In addition, the /O Port Write
Command combines the 8-bit data input into the output array that is indicated as

command string out.
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Command 2([u8]] In)

command string out

: [Address/Data
% [Out of Range
Error

| o

Figure 77 Block Dzagram for VI Case Paket Select Case
Number '5

Figure 78 is the block diagram used to prepare the PCB Read Command string for
processing by the microprocessor. It's case number is '6' corresponding to the PCB Read
Command's hexadecimal equivalent. The Peripheral Control Bus (PCB) device address
and PCB device sub address ranges are verified. The PCB device address and sub
address are combined with the PCB Read Command's hexadecimal number equivalent

into an array whose output is indicated as command string out.

command string out

IAddress/Data
Out of Range
Etror

Flgure 78: Block Dzagram for VI Case Paket Select - Case
Number '6'.
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Figure 79 is the block diagram used to prepare the PCB Write Command string for
processing by the microprocessor. It's case number is '7' corresponding to the PCB Write
Command's hexadecimal equivalent. The Peripheral Control Bus (PCB) device address,
PCB device sub address, and 8-bit input data ranges are verified. The. PCB device
address, sub address, and 8-bit input data are combined with the PCB Read Command's

hexadecimal number equivalent into an array whose output is indicated as command

String out.
i Command 2]
Command 2[fu]] In| .
|command string out
o A A Korrr v, Ay v [us]
& [Address/Daty
Out of Range
: Error
3 :
ST ] §
e
Figure 79: Block Diagram for VI Case Paket Select - Case

Number '7'.

Figure 80 is the block diagram containing the code for the Run Command. It's
case number is '8’ corresponding to the Run Command's hexadecimal equivalent. The
Run Command is not sent directly to the microprocessor. This block diagram for the Run
Command serves more as a place marker for future additions to the list of commands.
The Wait Command's block diagram is similar to the Run Command's block diagram
shown in Figure 80 except that the case number is '9" instead of '8'. The Enable and
Disable Commands are also similar to the Run Command's block diagram except that
their case numbers are '10' and '11', respectively. The Enable and Disable Commands are

handled by the microprocessor, but because the commands of each consist of only their
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Commands' hexadecimal number equivalents, the numbers are passed directly through to
the command string out indicator. Comment Command is handled the same as the Run

and Wait Commands with a hexadecimal number equivalent of '12".

ibddress/Data
Out of Range
Error

Flgure 80: Block Dzagram for VI Case Paket Select - Case
Number '8'.

Figure 81 is the block diagram used to prepare the Read A/D Converter Command
string for processing by the microprocessor. It's case number is '13' corresponding to the
Read A/D Converter Command'’s hexadecimal number equivalent. The A/D converter's
channel range is verified. The A/D converter's channel number is combined with the 4/D
Converter Command's hexadecimal number equivalent into an array whose output is
indicated as command string out. This command is ignored by the microprocessor at this
time. Once the STAR Control Board is replaced by the PANSAT Control Board, the

microprocessor will handle A/D conversions.
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Command 2{{u8]} In

Case Number,

Address/Datal
Out of Range
Ermor
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/

B B B B S S D B S B 3 B D B D S S B GBS B DB BE B0 55

Figure 81: Block Diagram for VI Case Paket Select - Case
Number '13'

11. Serial Port Write VI

Serial Port Write VI was discussed in Chapter VI. Serial Port Write VI was
developed by National Instruments and is further discussed in References 9, 12, 15, and

16.

12. Sendl1 VI

Figure 82 is the icon and connectors for VI Sendl. Sendl VI creates the Serial
Port Packet shown in Table 2 of Chapter IV. A packet consist of the Flag, Lenl, LenZ,
Data Field CRCI and CRC2. This VI consist of six sequences. Sequences '0' through 'S’

are shown below with a brief description of each.

Port No, ————

flag send Data Anay with CRC's
Data to send ~ E)):) Msa Length
I Len2
Lenl
sendl.vi

Figure 82: Icon and Connectors for VI
Sendl.
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Shown in Figure 83 is sequence '0' of VI Send!. The code in sequence '0’ takes
the input command string and finds it's length. The message length is divided by 256

with the quotient being stored in Len2 and the remainder in Lenl. These values are

passed on.

fl Data to send
| {[ake

Figure 83: Block Diagram for VI Sendl - Sequence '0'

Shown in Figure 84 is sequence '1' of VI Sendl. The code in sequence 'l'
combines the Flag (hexadecimal 7E) with Ler/ and Len2 in an array builder. This array
is then converted into an ASCII string and is then combined with the data string and two
zero values that represent the CRC1 and CRC?2 values until their real values are

determined.

] [«]Len2
*{Len]
S TE - *|data array
(o ||[Lent| —=+{f] w0 3
o ] [ = E trehd

(U8 }iLen2 }—0 = CRCT

[Msg Length| =il CRC2
016
+| [+
datal” |msg length) cr0) crl

Figure 84: Block Diagram for VI Sendl - Sequence '1'.
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Shown in Figures 85, 86 and 87 are sequences '2', '3' and '4' of VI Sendl. The
code in each of the sequences is determining values CRC!I and CRC?2 so that cyclic
redundancy check (CRC) can be performed when the data is received by the

MICroprocessor.

Msa Lengthi 4

R A BT & 2T L B 5

[datal"msg length)

Figure 85: Block Diagram for VI Send! - Sequence 2'.

Figure 86: Block Diagram for VI Send! - Sequence '3'.




«flLeni

Figure 87: Block Diagram for V1 Sendl - Sequence '4'.

Figure 88 shows the code for sequence '5' of VI Send]. This final sequence
replaces the zero values that were previously inserted into the CRC/ and CRC?2 slots of
the array with the values that were determined in sequences 2' through '4'. Now the data

array is ready to be sent to the microprocessor.

Figure 88: Block Diagram for VI Sendl - Sequence 'S'.

13. RCVR VI

Figure 89 is the icon and connectors for VI RCVR. RCVR VI processes the string
of data that is received from the microprocessor. VI RCVR consists of four sequences

described below.
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Part Number ——RCYR} Msg Read Timesout
Flag Read Timeout ~ | =% | “ CRCRead Timsout
’;)1 — L creo
; CRC
e serreenenanae Length Head Timeout
s Read String

RC’\‘R.?i
Figure 89: Icon and Connectors for VI RCVR.

Figure 90 shows the Flag Check and Sequence '0' portion of the VI RCVR. The
Flag Check portion is on the left hand side of the figure in the While Loop. The While
Loop continues until the Flag (hexadecimal 7E) is read from the serial port. One byte is

read at a time.

SERIAL

r
i LEEAD

¢ ifobL;

£ [FlagRead
¢ |Timeout

Y [E] |
} READ

Length Read
Timeout

Ayt deet vt et e, .: 'v‘.’-‘-.‘v'fr':‘-'f-‘fr‘.‘-'.‘-'-f-‘.‘-'.‘—'.‘—':‘z
lFIag ea |
Timeout

Figure 90: Block Diagram for VI RCVR - Flag Check and Sequence '0".

Once the Flag byte has been read, the data string is passed on to sequence '0'

shown in Figure 90. The code in sequence '0' reads the next two bytes of the string to
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pull the Len! and Len2 bytes from the received data. Figure 91 shows the case for when

the Flag is not found or a read time out error occurs. If a read time out occurs operations

cease and a read time out is indicated to the user.

Fa v. s
Timeout [TF]

Figure 91: Flag Search and Flag Read Time Out 'True' Cases.

Figure 92 contains the code for sequence '1' of VI RCVR. In this sequence the
Data Field is extracted from the data string. The message or Data Field is displayed to

the user by the indicator labeled Read String.

tsg Read
Timeout

|Timeoul | e

Figure 92: Block Diagram for VI RCVR - Sequence 'l".
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The code shown in sequence '2' of Figure 93 reads the next two bytes from the
serial port - CRCI and CRC2. All portions of the received data are then recombined to
perform the next step - the cyclic redundancy check (CRC).

SIS

SRR

CRC Read
Timeout

o e
Figure 93: Block Diagram for VI RCVR - Sequence '2'.

Sequence '3' of Figure 94 shows the code for performing the cyclic redundancy
check. When calculations are completed, if CRC0O and CRC1 are equal to zero then a no
error indication for the received string is indicated. If these values are not zero, an error

is indicated and retransmission is necessary.

Figure 94: Block Diagram for VI RCVR - Sequence '3'.
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14. Command Response Cases VI

Figure 95 shows the icon and connectors for VI Command Response Cases. This

VI is responsible for formatting the command string received from the microprocessor

into a format that is easily readable by the user.

Auray of uS In rere’ss%o- Command Response
Case Number Cases

command response cases.vi

Figure 95: Icon and Connectors for VI
Command Response Cases.

Figure 96 is the block diagram that contains the code for transforming the

Memory Read (8-bit) Command, Case '0', into a readable format when it is received back

Figure 96: Block Diagram for VI Command Response
Cases - Case '0'.

from the microprocessor. The 32 bit CPU address is transposed from the 80186 format
by the Change 4([u8]) to [u32] VI. The 8-bits of data that were requested by the user is
delineated by a leading equal sign. The command is read out to the user in an ASCII
string format.

Figure 97 contains the block diagram for case '1' of VI Command Response

Cases. Case 'l is the Memory Write (8-bit) Command. This command is repeated back
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to the user in the same format that it was sent. The 32 bit CPU address is transposed from

the 80186 format by the Change 4([u8]) to [u32] VI

Case Number lﬁ.rra'; of ug In| {Command Responsel

3 3
e L

Figure 97: Block Diagram for VI Command Response
Cases - Case '1'.

Figure 98 is the block diagram that contains the code for transforming the
Memory Read (16-bit) Command, case '2', into a readable format when it is received back
from the microprocessor. The 32 bit CPU address is transposed from the 80186 format
by the Change 4({u8]) to [u32] VI. The 16 bits of data that were requested by the user is
converted from the 80186 format by the Change 2([u8]) to [ul6] VI and then delineated

from the other data by a leading equal sign. The command is read out to the user in an

ASCII string format.

dray of u8 In| {Command Response|

EI 2 tl el R N T,
R16
o] BGE] 'E/\" : o
g AN #570
=" 1132 e [
Lkl [2ad
%
s
45 Claxxy
] R i

Figure 98: Block Diagram for VI Command Response Cases
- Case '2'.
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Figure 99 is the block diagram that contains the code for transforming the
Memory Write (16-bit) Command, case '3, into a readable format when it is received back
from the microprocessor. The 32 bit CPU address is transposed from the 80186 format
by the Change 4([u8]) to [u32] VI. The 16 bits of data that were written to the memory
are converted from the 80186 format by the Change 2([u8]) to [ul6] VI. The command

is repeated back to the user to confirm that the operation was carried out.

Igrrau of uB Inl

GRS

"‘V“'"""n: B e

i 4[[581]- >
b

1 u32)

Figure 99: Block Diagram for VI Command Response Cases

\sd}

- Case '3".

Figure 100 is the block diagram that contains the code for transforming the /O
Port Read Command, case '4', into a readable format when it is received back from the
microprocessor. The 16 bit CPU I/O port number is transposed from the 80186 format by
the Change 2([u8]) to [ul6] VI The 8-bits of data that were requested are delineated
from the other data by a leading equal sign. The command is read out to the user in an

ASCII string format.
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Figure 100: Block Diagram for VI Command Response
Cases - Case '4'.
Figure 101 is the block diagram that contains the code for transforming the /0
Port Write Command, Case '5', into a readable format when it is received back from the
microprocessor. The 16 bit CPU /O port number is transposed from the 80186 format by
the Change 2([u8]) to [ul6] VI. The command is repeated back to the user in the same

form in which it was sent confirming that the operation was carried out.

ICommand Response]

| et
TNudgl ©

L IERRTRRPPVRINOPIRPIENRTE NI RIPR TN PIN Y RITTIVYRIVEIERINRIVRRIFNLINIIY.

Figure 101: Block Diagram for VI Command Response
Cases - Case '5'.

Figure 102 is the block diagram that contains the code for transforming the PCB

Read Command, case '6', into a readable format when it is received back from the
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microprocessor. The command is repeated back to the user in the same format that it was
sent with the addition of the 8-bits of data that were requested by the user. The requested

data is delineated from the other data by a leading equal sign.

Figure 102: Block Diagram for VI Command Response
Cases - Case '6'.

Figure 103 is the block diagram that contains the code for transforming the PCB
Write Command, case '7', into a readable format when it is received back from the
microprocessor. The command repeated back to the user is in the same format that it was

sent.

|Command B esponsel

o

T e e

b

Figure 103: Block Diagram for VI Command Response
Cases - Case '7'.

82




Figure 104 is the block diagram that contains the code which corresponds to the
Run a File Command, case '8'. This command is not repeated back to the user. Each

individual command within the specified file is repeated back to the user. The code

contained in case '8' serves as a place marker for future additions to the list of commands.

{urray of ug In [Command Pesponse]

e

Figure 104: Block Diagram for VI Command Response
Cases - Case '8'.

Figure 105 is the block diagram that contains the code which corresponds to the
Wait Command, case '9'. This command is not sent to the microprocessor and is not
repeated back to the user. This command is handled by the DCS interface software, by
the Wait VI, within the LabVIEW environment using the PC's clock. The code contained

in Case '9' serves as a place marker for future additions to the list of commands.




Case Number [[us1] {Aray of ud in| [Command Response]
INOEN| LA % B |[Rbe
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Figure 105: Block Diagram for VI Command Response
Cases - Case '9'".

Figure 106 is the block diagram that contains the code which performs the Ernable
Command, Case '10'. This command is repeated back to the user in the same format in

which it was sent, confirming that the embedded system is enabled.

[.E.rrav of u8 ln| [Command Response]
e 10}

EMNABLE

RPRERRRRARAR

RRARERE

R

e S L L o e e o e i

Figure 106: Block Diagram for VI Command Response
Cases - Case '10'.

Figure 107 is the block diagram that contains the code which performs the
Disable Command, Case '10". This command is repeated back to the user in the same

format in which it was sent, confirming that the embedded system is disabled.
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Figure 107: Block Diagram for VI Command Response
Cases - Case '11".

Figure 108 is the block diagram that contains the code which corresponds to the
Comment Command, Case '12'. This command is not sent to the microprocessor and is
not repeated back to the user. This command is handled by the DCS interface software,
by the Comment Handler VI, within the LabVIEW environment. The code contained in

Case '12' serves as a place marker for future additions to the list of commands.

s %Wmmmaa%mmmmmmmmﬂmé

Figure 108: Block Diagram for VI Command Response
Cases - Case '12'.
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Figure 109 is the block diagram that contains the code for transforming the Read
A/D Converter Command, case '13', into a readable format. At this time A/D commands
are not handled by the System Control Board. A/D conversion takes place using the
General Purpose Interface Bus (GPIB) using a multimeter and the ADR Fake VI. The
Read A/D Converter Command is repeated back to the user in the same format that it was
sent in with the addition of the measurement requested by the user. The requested
measurement is set apart from the other data by a leading equal sign. Modifications to
this case following the replacement of the Space Thermal Acoustic Refrigerator (STAR)
System Control Board with the PANSAT System Control Board were addressed in
Chapter IX.

[Command Response]|

Sl S R O D

abc
(4

fake

P R S ) e R
£

.WMWA%W%%M%MQM%&WME

Figure 109: Block Diagram for VI Command Response
Cases - Case '13'".

15. Send2 VI

Figure 110 shows the icon and connectors for VI Send2. This VI transmits the

packet over the user specified serial port.

I sendZ] S
}?:;:It: ;T:E )T - Serial Write Enor
send2.vi

Figure 110: Icon and Connectors for VI Send?.
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Figure 111 is the block diagram that performs the VI Send? function. VI Send?2
uses three other VIs previously discussed - the packet building Send! VI, the Serial Port
Write VI and the Simple Error Handler V1.

132 I
send
DY

£
13
1

rite String
abc

.........
I o T M
Serial Port Wiite | £ ol

. A/ rite
Simple Enor Handler | Eyer

Figure 111: Block Diagram for VI
Send?.

Senal Port "ite. vi

16. Command Packet VI

Figure 112 shows the icon and connectors for VI Command Packet. VI
Command Packet determines whether a given command is valid and, if valid, assigns the
command's corresponding hexadecimal number equivalent. The input command string is

transformed into the 80186 format, making it ready for handling by the microprocessor.

) CO command string out
String In ;’let .......... - Command Error

- bddress/Data Out of Range ...
Command Packet_vi

Figure 112: Icon and Connectors for VI
Command Packet.

Figure 113 is the block diagram that contains the code for determining whether a

given command is valid and, if valid, assigns the command's corresponding hexadecimal
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number equivalent. VI Command Packet uses four previously described VIs - the List of

Commands VI, the Leading Space Striper VI, the Change ul6 to 2([u8]) VI and the Case
Paket Select VI.

PGSBS

Command
~[Error

case
aket
select

command string out]
\[us]

A%%@%&‘WW@E@
|_i_
-

Address/Data
“|0ut of Range
Error

TR R Rl

for VI Command Packet - 'False'

RO

Figure 113: Block Diagram
Case.

Figure 114 shows the case where the input command does not match the list of
commands. For this case, the 'true’ case, an error is indicated to the user and operations

cease. The correct form of the command can then be attempted again by the user.

[Stiing In| g HIEEHE Command
Bb ~{Error
[ahe] —H %
0 command string out
~—2 = ¢ fus]
omm
-ands ¢ %
- “ddress/Data
N Y™ Range
g Eror
o 2R
Figure 114: Block Diagram for VI Command Packet - "True'

Case.
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17. Command Received

Figure 115 shows the icon and connectors for VI Command Received. This VI
delineates the data field from the Flag, Lenl, Len2, CRCI and CRC?2 bytes that are
shown in Table 2 of Chapter IV.

......................... Recere Emar

Part Number e

Flag Fread Timeout -1 recvd
command received. vi

Comrnand Received

Figure 115: Icon and Connectors for VI
Command Received.

Figure 116 is the block diagram that performs the VI Command Received
function. VI Command Received uses the previously discussed VI RCVR. This VI

indicates whether an error may have occurred when receiving data over the specified

serial port.

Flag Read TN
‘Timgqut | 1 ¢ Dv - Feceive

= S

¢ [Command Received|

...........................................

Figure 116: Block Diagram for VI Command
Received.

18. Response Flag & Case Detect VI

Figure 117 shows the icon and connectors for VI Response Flag & Case Detect.
This VI processes the command data field portion of the data sent from the
microprocessor (see Chapter [V, Table 3). Response Flag & Case Detect VI checks to

see if the data field flag is set and then checks to see that the hexadecimal number

89




corresponding to a command is within the List of Commands range. The Array of U8 Out

is the data field less the command data field. The case number is determined and

indicated.

. flag & Amray of uB Out
Sting N fase = Case Number

response flag & case detect.vi

Figure 117: Icon and Connectors for VI
Response Flag & Case Detect.

Figure 118 is the block diagram that performs the VI Response Flag & Case
Detect function. VI Response Flag & Case Detect uses the previously discussed VI
Change 2({u8]) to [ul6].

iray of uB Out
[uve]

I-_Eas:»sz Number

String 1N

Response

Figure 118: Block Diagram for VI Response Flag &
Case Detect.
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19. Determine Case VI

Figure 119 shows the icon and connectors for VI Determine Case. V1
Determine Case processes the data field portion of data received from the microprocessor

(see Table 2, Chapter IV).

g Error detection Out

Array of ul In deter- Command Fesponse
Case Number = cn?a"s]g
True/False

determine case._v¥i

Figure 119: Icon and Connectors for VI
Determine Case.

Figure 120 is the block diagram that performs the VI Determine Case function.
VI Determine Case uses the previously discussed Command Response Cases VI to

transform the information into a user friendly format.

%"

BB RS False PESERSEAREREE,
2 alsg

S :
3

Command Response)
abe

Error detection Out]

Figure 120: Block Diagram for VI Determine Case - 'False'
Case.

Figure 121 shows the case in which a receiving error has been detected. If an

error is detected, operations cease and the error is indicated to the user.
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Figure 121: Block Diagram for VI Determine Case - "True'
Case.

20. Send Command VI

Figure 122 shows the icon and connectors for VI Send Command. Send
Command V1 is responsible for transforming the input command into an acceptable
format for handling by the microprocessor. Once transformed, the command string is

sent over the user specified serial port.

Part Number ————

. seng [ Command Error
Command String coy _ _
-ang - Serial Write Error

send command. vi

Figure 122: Icon and Connectors for VI Send
Command.

Figure 123 shows the block diagram for VI Send Command (the 'false' case
indicates that no errors were detected). VI Send Command uses two previously described

VIs - Command Packet VI and Send2 V1.
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Figure 123: Block Diagram for VI Send Command - 'False'
Case.

Figure 124 shows the 'true' case for VI Send Command. The 'true' case occurs
when there has been a command error detected. When an error is detected, operations

cease, the error is indicated and control returns back to the user.

Command Sting

Command
E rror

Figure 124: Block Diagram for V1 Send Command - 'True'
Case.

21. Command Response VI

Figure 125 shows the icon and connectors for VI Command Response. Command
Response VI takes the data field portion of a packet, subtracts the command data field
from it and transposes the remainder into a format that is legible by the user (see Tables 2

and 3 in Chapter IV).
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Flag Read Timeout - pé%%e

command response.yi

Figure 125: Icon and Connectors for VI
Command Response.

Figure 126 is the block diagram or code used to perform the Command Response
VI's function (‘false' case indicates that no errors were previously detected). Command
Response VI uses three previously discussed VIs - Command Received VI, Response Flag

& Case Detect VI and Determine Case V1.

: % |Command Response
3 abe il
F[ag Read g%‘rf{' ) %
Timeout | jrecy ;

3 DBL I),""' [y
case
detect

Response
Etror
B

Figure 126: Block Diagram for VI Command Response -
'False' Case.

Figure 127 shows the 'true' case for VI Command Response. The 'true' case
occurs when an error has been previously detected. If an error occurs, operations cease,

the error is indicated and control returns to the user.
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Error

Figure 127: Block Diagram for VI Command Response -

"True' Case.

22. Find # of Commands VI

Figure 128 is the icon and connectors for V1 Find # of Commands. Find # of
Commands VI is a subV1I of the File Handler VI, which is still to be discussed. Find # of

Commands VI is used to determine the number of commands contained in a file.

tulti Line String In

find #
of com

mand

find # of commands._vi

Mo. of Commands

Figure 128: Icon and Connectors for VI Find #

of Commands.

Figure 129 is the block diagram or code to carry out the function of VI Find # of

Commands. Find # of Commands VI uses the previously discussed Leading Space

Stripper VI.
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Multi Line Stiing In

. No. of Commands|} -

Figure 129: Block Diagram for VI Find # of
Commands.

23. Case Number Find VI

Figure 130 is the icon and connectors for VI Case Number Find. Case Number
Find VI is used to find a specified command. The command's hexadecimal number is
equivalent to it's case number. The case number corresponds to it's position in the array

of the previously discussed List of Commands VI

Case # to Find ———
ase #toFin Case |- Case Found =F

‘ho. +~ String Out {F)
find Jr~es String Out {T)

Case number find.¥i

Sting In

Figure 130: Icon and Connectors for VI Case
Number Find.

Figure 131 is the block diagram or code for VI Case Number Find. If the
command is found, a 'false' case is indicated on the Case Found = F output. If the
command is not found a 'true’ case is indicated. Two output strings are returned from tiie
Case Number Find VI - String Out (F) and String Out (T). String Out (F) is the string
returned from the VI when the case is found. VI Case Number Find uses two previously

discussed VIs - Leading Space Stripper VI and List of Commands VI
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Figure 131: Block Diagram for VI Case
Number Find.

24. Wait V1

Figure 132 is the icon and connector for the Wait VI. Wait VI is used to pause

operations by the amount of time desired. Wait VI uses the PC clock and takes input in

the millisecond scale.

wait

Line Command In (ms]

wait_vi

Figure 132: Icon and Connector for VI Wait.

Figure 133 is the block diagram or code for the VI Wait. VI Wait uses the
previously discussed VI Leading Space Stripper.
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Figure 133: Block Diagram for VI Wait.

25. Data Out VI

Figure 134 is the icon and correctors for the Data Out VI. Data Out VI is used to

set apart data that was retrieved from the embedded system.

, data
Command String In Uatd Data Out
data out.¥i

Figure 134: Icon and Connectors for VI Data
Out.

Figure 135 is the block diagram for VI Data Out. The Data Out VI code takes
each line received back from the microprocessor and searches for the equal sign. Once
found, whatever data follows the equal sign is separated and indicated at the Data Out

connector.
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Figure 135: Block Diagram for VI Data Out - 'True' Case.

Figure 136 shows the 'false’ case for VI Data Out. The 'false' case occurs when a

line does not contain an equal sign.

Command String In

ytprl ot A‘v:é ‘
2 [Data Oul

o abc

Figure 136: Block Diagram for VI Data Out - 'False' Case.
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26. Control VI

Figure 137 is the icon and connectors for VI Control. VI Control is used to
handle any of the eight low level commands plus the Enable, Disable and A/D Read
Commands. These commands were discussed in Chapter VII in the Low and High Level

Command Sections.

Command Response
“ Serial Wiite Error
: - Command Error

e Bresponse Eror
control vi

Figure 137: Icon and Connectors for VI
Control.

iCon- |
H tral

Part Hurnber
Comrmand String In

Figure 138 is sequence '0' of the block diagram for VI Control. In this block
diagram the command string is being formatted and sent to the microprocessor for

handling. VI Control, sequence '0', uses the previously discussed VI Send Command.

Part Mumber

sz I
zend

! [Command

Sernial
W ribe

Figure 138: Block Diagram for VI Control -
Sequence '0'.
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Figure 139 is the 'false’ case, sequence '1' of the block diagram for VI Control. In
this block diagram the data string is received back from the microprocessor. The data
string is transformed into a user legible format and indicated by the Command Response
connector. VI Control, sequence '1', uses the previously discussed VI Command

Response.
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Figure 139: Block Dzagram for VI Control -
Sequence 'l", 'False' Case.

Figure 140 is the 'true’ case, sequence '1' of the block diagram for VI Control.
The 'true' case occurs if an error is detected in the sending or receiving of data. If an

error occurs operations cease, the error is indicated, and control is returned to the user.
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Figure 140: Block Diagram for VI Control -
Sequence '1', "True' Case.

27. Multi Line Control Rcvd Data to Array ul6 VI

Figure 141 is the icon and connector for VI Multi Line Control Revd Data to
Array ul6. Multi Line Control Revd Data to Array ul6 VIis usually used following the
previously discussed VI Multi Data Out. Once data has been-delineated using the equal
sign, the data can then be stored into an array using the Multi Line Control Revd Data to

Array ul6 VI This data can then be observed or manipulated further by the user.

————— RBCYD Data Length

vd
Hata RCYD DATA ARRAY

, [ul6]
multi line control rcyd data to array ulb.vi

Reowd Data In

Figure 141: Icon and Connectors for VI Multi
Line Control Revd Data to Array ul6.

Figure 142 is the block diagram that performs the VI Multi Line Control Revd

Data to Array ul6 function.
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Figure 142: Block Diagram for VI Multi Line
Control Revd Data to Array ulé6.

28. Comment Handler VI

Figure 143 is the icon and connectors for VI Comment Handler. Comment
Handler VI enables the user to add comment lines into a file or sequence of commands.

The semicolon is the symbol used for making comments.

r————— Mg. Commands Out

LI
hn;;;;]rat prosnnmenn | 15t of Commands Dut
e

MNo. Camrmatids
Command String In

comment handler_vi

Figure 143: Icon and Connectors for VI
Comment Handler.

Figure 144 is the block diagram for the Comment Handler VI. Comment Handler
VI uses the previously discussed Case Number Find VI. Figure 144 is the 'true' case. The

'true' case occurs when a comment line (a line with a leading semicolon) is not found.




No. Commands]

[us HN

Command String In

Figure 144: Block Diagram for VI Comment Handler -
"True' Case.

Figure 145 is the 'false' case block diagram for the Comment Handler VI. When a

comment line (a line with a leading semicolon) is found, then this code is executed.

No. Commands

Command Stri

22 93]

Figure 145: Block Diagram for VI Comment Handler -
False' Case.

29. Multi Wait VI

Figure 146 is the icon and connectors for VI Multi Wait. Multi Wait VI performs
the same function as the previously discussed Wait VI, but in a multiple command

environment.
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Figure 146: Icon and Connectors for VI Multi

Wait.

Figure 147 is the 'false’ case block diagram for VI Multi Wait. One line is

processed at a time. The 'false' case is executed if the command line being processed is

the Wait Command whose hexadecimal equivalent is'9". Wait Command VI uses the

previously discussed Case Number Find VI with '9' being the case sought.

MNo. Commands

]

N

ibe

No. Commands Out]
1 [us2])

Figure 147: Block Diagram for VI Multi Wait - 'False’'

Case.

Figure 148 shows the 'true' case block diagram for VI Multi Wait. The 'true' case

is executed if the Wait Command 1s not in the command line being processed. VI Multi

Wait 'true' case uses the Case Number Find V1.
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Figure 148: Block Diagram for V1 Multi Wait - "True'
Case.
30. Multi-Line Data Out VI

Figure 149 is the icon and connectors for V1 Multi-Line Data Out. Multi-Line

Data Out VI collects the data delineated by the previously discussed VI Data Out.

Ma. Commands ryltr- Response
) data
Cormmand String I aut

multi-ine data out_vi

Figure 149: Icon and Connector for VI Multi-
Line Data Out.

Figure 150 is the block diagram for VI Multi-Line Data Out. Multi-Line Data
Out performs the same function as VI Data Out, but in a multiple command environment

processing one command line at a time.
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Pesponse

Figure 150: Block Diagram for VI Multi-Line Data Out.

31. Command Handler VI

Figure 151 is the icon and connectors for VI Command Handler. Command
Handler VI performs the same function as the previously discussed Control VI, but

handles multiple commands.

Port Humber o Response
Mo, Commands = har|1 2 — Errar
Command String In wef ™1 EL

command handler.vi

Figure 151: Icon and Connectors for VI
Command Handler.

Figure 152 is the block diagram for VI Command Handler. Command Handler
VI uses two previously discussed Vls - Leading Space Stripper VI and Control VI
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Figure 152: Block Diagram for VI Command Handler.

32. File Handler VI

Figure 153 is the icon and connectors for the File Handler V1. File Handler VI is

used to open files created using the Window's application Notepad.

ile | penmn~e | ist of Commands Out

d-
f’:? Mo, Commands

file handler.vi

Line Command In

Figure 153: Icon and Connectors for VI File
Handler.

Figure 154 is the 'false' case block diagram for VI File Handler. File Handler VI
uses three previously discussed VIs - Case Number Find VI, Leading Space Stripper VI
and Find # of Commands VI
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List of Commands Out
i3]

{No. Commands|

Figure 154: Block Diagram for VI File Handler - 'False' Case.

Figure 155 is the 'true’ case block diagram for VI File Handler. The 'true' case is

executed if case number '8' is not found.

List of Commands Qul

Figure 155: Block Diagram for V1 File Handler - 'True' Case.

33. Multi Line Control VI

Figure 156 is the icon and connectors for the Multi Line Control VI. Multi Line

Control VI handles files, waits, comments, data outputs, and stores the data outputs into
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an array. Additionally, Multi Line Control VI handles all the same commands as the

Control VI, but in a multiple command environment.

Response
BReceived Data
ine L RECEIVED DATA ul8
Cofil-
a1} L RCYD DATA LENGTH]
S EI’IOT
multi line control.vi

Wi

Port Humber
Command String or File

Figure 156: Icon and Connectors for VI Multi
Line Control.

Figure 157 is the 'true' case block diagram for VI Multi Line Control. Multi Line
Control VI 'true' case block diagram uses seven previously discussed VIs - Leading Space
Stripper VI, File Handler VI, Multi Wait VI, Comment Handler VI, Command Handler
VI Multi-Line Data Out VI and Muiti Line Control Revd Data to Array ul6 VI

)
|+ ¢

[
==
]

EW
S

i ) § [BECEIVED DATA ui6
vd (use]]
i ata~s
? LJ [u16 :]
5 8 (35<]] [RCVD DATA LENGTH

am [Received Data

Figure 157: Block Diagram for VI Multi Line Control - 'True'
Case.

Figure 158 is the 'false’ case block diagram for VI Multi Line Control. The 'false’

case is executed when all input commands have been executed.
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Figure 158: Block Diagram for VI Multi Line Control - 'False'
Case.

B. TSWEEP3 V1

TSWEEP3 VI is a modified version of the TSWEEP2 VI that was briefly discussed
in Chapter VII. TSWEEP3 VI uses the DCS Interface Software discussed in Section A to
test the temperature multiplexer. TSWEEP2 VI was used to test 16 temperature sensors
whereas TSWEEP3 VI has been developed to test a variable number of temperature
sensors. Figure 159 is the icon and connectors for VI TSWEEP3.

. T premvesoltages
Gain tB§t9f e T emperatures
PR Rraph Out

tsweep3.vi

Figure 159: Icon and Connectors for VI
TSWEEP3.
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Figure 160 is the block diagram for VI TSWEEP3. This block diagram has a
couple of minor changes compared to the block diagram of TSWEEP2 VI. The first
change is that the command line on the left hand side has the additional 7un rmux2
command and the second change is that the Convert to Celsius VI has been replaced with
the Convert to Celsius2 VI. Testing is ongoing on the TMUX, as stated in Chapter VII,
and now the second set of 16 sensors are being tested along with the first 16. This
required the changes to TSWEEP2 VI just discussed. The new file, fmux2, was easy to
create. The tmux] file was copied and then saved as tmux2. Corresponding addresses for

the second set of sensors were then applied to the new file.

==,

Figure 160: Block Diagram for VI TSWEEP3.

Multi Line Control VIis a subVI of the TSWEEP3 VI. Multi Line Control VI was
discussed in Section A of this Appendix and therefore is not discussed here. Convert to

Celsius2 VI and Graph Array VI and their subVlIs are discussed below.
1. Convert to Celsius2 VI

Figure 161 is the icon and connectors for VI Convert to Celsius2. Convert to
Celsius2 VI is a modified version of Convert to Celsius VI. The changes allow for the

testing of any number of temperature sensors, whereas before testing was limited to the
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16 sensors on one channel. This need was identified during the testing of the second

channel of the TMUZX, which led to these modifications.

g WOl 3 Q@S
Array [u16]In &"{J,'p

C T — T
convert to celcius?. vi

oo T EADIET ELLINES

Figure 161: Icon and Connectors for V1
Convert to Celsius2.

Figure 162 is the block diagram for VI Convert to Celsius2. Meas. to Volt VI and
Temp. Const. List VI are subVIs of the Convert to Celsius2 VI and are discussed below.
The outer For Loop shown in Figure 162 is executed according to the number of sensor

measurements taken. An algorithm is then carried out on each measurement which

converts the voltage into a temperature.

Wrray [u16] in| Teméeratures‘
[uxsla IR {[oBL]

meas. N S A ST B SRS
I s S >. [[vDD?QTB/ -(0.99961 4-v})/
o] b
fvoltages]|
10HN
s N 7N
N 2> VERN
IS o
ternp
const. Bl ot . PO
array = 1273.0¢
| %

Figure 162: Block Diagram for VI Convert to Celsius2.

2. Meas. to Volt VI

Figure 163 is the icon and connectors for VI Meas. to Volt. Meas. to Volt VI
takes the temperature sensor voltages, prepares them for further processing and indicates

the number of sensor readings that were made.




No. Sensors Read

neas.

Anay [U1E] In

Galn ........... . "-"Dlt.
meas. to volt.¥i

e Y olt AR S

Figure 163: Icon and Connectors for VI Meas.
to Volt.

Figure 164 is the block diagram for the Meas. to Volt VI. Each element of the
unsigned 16 bit number array, shown in Figure 164 labeled as Array [ul6] In, is
converted into a double precision floating point number, processed and then stored in a

double precision floating point number array labeled Voltages.

Mo. Sensors Read|

Errav iu‘l 5

[uss]|

[o81]

Figure 164: Block Diagram for VI Meas. to Volt.

3. Temp. Const. List VI

Figure 165 is the icon and connectors for the Temp. Const. List VI. Temp. Const.
List VI contains a list of constants used in the algorithm to convert voltage into

temperature readings.

tem
congt.
anay

Temp. Constant &mray

temp. const. list.vi

Figure 165: Icon and Connectors for VI Temp.
Const. List.
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Figure 166 is the block diagram for the Temp. Const. List VI. VI Temp. Const List

is an 11 element array, containing real numbers with seven digits of significance.

AN

§,1 941 44823?“"“"“‘ {=3]E

Temp. Constant Array]
 [oB1]

3537503

[ 378355

£0.10912;

s

70393265
mies
S0.111192; 90008877

Figure 166: Block Diagram for VI Temp. Const. List.

4. Graph Array VI

Figure 167 is the icon and connectors for the Graph Array VI. Graph Array VI is
subVI of TSWEEP3 VI used to plot the temperatures following the voltage conversions.

graph
array
graph array._vi

Sray In Graph Dut

Figure 167: Icon and Connectors for VI Graph
Array.

Figure 168 is the block diagram for the Graph Array V1. The previously
determined temperature measurements are indicated by the Array In input shown in

Figure 168. These values are then plotted out.
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Figure 168: Block Diagram for VI Graph Array.
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APPENDIX B. SIMULATOR ELECTRICAL POWER SUBSYSTEM
(EPS) INTERFACE SOFTWARE CODE

The software described in Appendix B is presented in the same order as it was in
Chapter IV. Each virtual instrument (VI) in this appendix is presented with it's icon and
connectors and block diagrams. Development of the VIs in this appendix are ongoing,
waiting the installation and arrival of the prototype batteries. EPS Battery Telemetry VI
and EPS Roll Rate/Attitude VI block diagrams contain only initial thoughts that require

further development.

A. POWER SUPPLY DRIVER

Figure 169 contains the icon and connectors for VI GPIBTEST. GPIBTEST VI
controls the operation of HP6653A Power Supply using remote programming and the

General Purpose Interface Bus (GPIB) [Ref. 11: pp. 6-1 through 7-27].

POWER power Voltage

............

voltage ~ " lsupplig-—.. Cument
Bt Meas Volt/Curr Out

current
GPIBTEST. ¥

GPIB address
Figure 169: Icon and Connectors for VI
GPIBTEST.

Figure 170 is the 'false' case block diagram for GPIBTEST VI The 'false' case

occurs when the power switch to the VI is turned off.
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Figure 170: Block Diagram for VI GPIBTEST - 'False' Case.

Figure 171 is the 'true’ case, sequence '0' for GPIBTEST VI In this sequence
remote commands are sent to the Power Supply directing it to take the specified voltage
and current. Remote programming commands are found in the Power Supply's operating

manual [Ref. 13: pp. 6-1 through 6-9].

T

BRI DR

Figure 171: Block Diagram for VI GPIBTEST - Sequence '0',
"True' Case.
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Figure 172 is the 'true' case, sequence '1' for GPIBTEST VI In this sequence,
operations are paused allowing the Power Supply time to set it's output voltage and

current to the specified level.

’52’155*«555.’9%%2\55&?

Q«WWW@K@WEW:J

2

Figure 172: Block Diagram for VI GPIBTEST - Sequence 'l’,
"True' Case.

Figure 173 is the 'true’ case, sequence '2' for GPIBTEST V1. In this sequence,

voltage and current measurements of the Power Supply are requested.

e
?3-%-&1 Frmia iy m g Eﬁﬁ"%ﬂ.}&'iﬁlﬁiﬁiﬁlﬁiﬂiﬁ"} i
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PDWEH [Meas.Volt/Curr Dut l!_l,

Figure 173: Block Diagram for VI GPIBTEST - Sequence '2',
"True' Case.

e
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Figure 174 is the 'true’ case, sequence '3' for GPIBTEST VI In this sequence, the
voltage and current measurements are read from the Power Supply and then formatted for

easy reading to the user.

Figure 174: Block Diagram for VI GPIBTEST - Sequence '3/,
"True' Case.

B. GPIBLOAD VI

Figure 175 is the icon and connectors for VI GPIBLOAD. GPIBLOAD VIis used
to control the HP6060A Single Input Electronic Load. GPIBLOAD VI has three modes of
operation - constant cutrent (CC), constant resistance (CR) and constant voltage. The CC
mode is the one that the simulator is expected to operate in, therefore the CC mode is

discussed below.

resistance -y -~ ERRUOR
Mode L Yoltage
PORT ~ oad e, Cutrent

g Py i

voltage - ¥ b meas. 1es
L M eas VYolt/Curr Out

current
GPIB address
GPIBLOAD.VI
Figure 175: Icon and Connectors for VI

GPIBLOAD.
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Figure 176 is sequence '0', 'false’ and 'CC' case (mode) block diagram for VI
GPIBLOAD. To the left of Figure 176 is the 'false’ case for the PORTO remote command.
This command is used to control the general-purpose digital port on the rear of the
Electronic Load. The Port output becomes active when the PORTON ('true' case)
command is used and becomes inactive when the PORTOFF ('false’ case) command is
used [Ref. 14: p. 2-17]. GPIBLOAD VI is defaulted to the 'true’ case. Sequence '0' sets
the voltage and current inputs on the HP6060A Single Input Load using remote

programming commands [Ref. 18: pp. 1-1 through 5-10].

LD Mode 3 Woltane] (5607 [Cument) [BL) -
[TE ] us"w sziz‘wwmwwmmxﬁﬁx% W%;Mmz%mmﬁmﬁm
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: o :
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1

voltage {IZ384

cunent Iy

DO ARRIORAIER % . R R RS A ARSI ERR

................ ERROR

Figure 176: Block Diagram for VI GPIBLOAD - Sequence
'0", 'False' and 'CC' Case.

Figure 177 is sequence '1', 'false' and 'CC' case block diagram for VI GPIBLOAD.
Sequence '1' pauses operations allowing the Load time to register the input voltage and

current settings.
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Figure 177: Block Diagram for VI GPIBLOAD - Sequence
'1", 'False' and 'CC' Case.

Figure 178 is sequence '2', 'true' and 'CC' case block diagram for VI GPIBLOAD.

Sequence '2' queries the Load to check and see if any errors have occurred in the input.

SYST:ERR?,

[PoFTOON]E .-

yoltage JIE3R;
current K383
resistance I8

meas. resl Il-aieas.Volt/CunUut 12kl

"‘““‘::J’ o ERROR

Figure 178: Block Diagram for VI GPIBLOAD - Sequence
2", "True’ and 'CC' Case.

Figure 179 is sequence '3', 'true’ and 'CC' case block diagram for VI GPIBLOAD.

Sequence '3' reads the Load indicating to the user any error messages that have occurred.
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Figure 179: Block Diagram for VI GPIBLOAD - Sequence
'3', "True' and 'CC' Case.

Figure 180 is sequence '4', 'true' and 'CC' case block diagram for VI GPIBLOAD.

Sequence '4' queries the Electronic Load for output current and voltage measurements.

[Meas.volt/Curr Dut || 2E<i} 1< ]IERROR

Figure 180: Block Diagram for VI GPIBLOAD - Sequence
'4' '"True' and 'CC' Case.

Figure 181 is sequence 'S, 'true' and 'CC' case block diagram for VI GPIBLOAD.

Sequence '5' reads the Electronic Load for output current and voltage measurements and

then formats it for easy reading by the user.
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Figure 181: Block Diagram for VI GPIBLOAD - Sequence
'5', '"True' and 'CC' Case.

C. SUPLOAD VI

Figure 182 is the icon and connectors for VI SUPLOAD. SUPLOAD VIis used to

test the operation of the Power Supply connected to the Electronic Load.

progm volt [supply) ug{pl meas volt supply
prgrm cur [supply] ~ & 77 meas curr supply
raods [ lload |- - mzas volt load
meas curr load
e (A CUNE I03d
SUPLOD.VI
Figure 182: Icon and Connectors for VI

SUPLOAD.

Figure 183 is sequence '0' of the block diagram for VI SUPLOAD. Sequence'('
uses the GPIBLOAD VI. An input current is applied to the Load. Measured voltage and

current are then indicated.
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iprum curt [suppl urr lnadi[OBL];

Figure 183: Block Diagram for VI SUPLOAD -
Sequence '0'.

Figure 184 is sequence '1' of the block diagram for VI SUPLOAD. Sequence 'l'
pauses operations for SUPLOAD VI to allow the Electronic Load Device to stabilize.

—

pram curr (supply)] -

Figure 184: Block Diagram for VI SUPLOAD -
Sequence '1'.

Ipram cur load; [DBL]:

Figure 185 is sequence '2' of the block diagram for VI SUPLOAD. Sequence "2'
uses the GPIBTEST VI the driver for the Power Supply. An input current and voltage is

applied to the Power Supply. Measured voltage and current are then indicated.

125




DD'."'.'F'I' ....... ;

iprurn curt Isupplull [pn:lm Curr IoadE-

Figure 185: Block Diagram for VI SUPLOAD -
Sequence 2.

D. EPS BATTERY TELEMETRY VI

Figure 186 is the icon and connectors for V1 EPS Battery Telemetry. EPS Battery
Telemetry VI will be used to provide the user a means for checking the status of the

batteries. Development of this VI is ongoing, awaiting the arrival and installation of the

prototype batteries.

gromr— TEMPERATURE B
telsm- -YOLT A
Bty {7 TEMP &,
Tty e VOLTS
S TE WP
EPS Battery Telemetiy_vi

Figure 186: Icon and Connectors for VI EPS
Battery Telemetry.

Mo. terations

Figure 187 is the block diagram for VI EPS Battery Telemetry. EPS Battery
Telemetry VI uses three previously discussed VIs - Multi Line Control VI (with its
numerous VIs), Convert To Celsius2 VI and Graph Array Out VI.
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Figure 187: Block Diagram for VI EPS Battery Telemetry.

E. EPS SUBSYSTEM ON/OFF VI

Figure 187 is the icon and connectors for VI EPS Subsystem On/Off. EPS
Subsystem On/Off VI will be used to provide the user a means to control and check which

satellite subsystems are receiving power.

DCSE
RF - RAF
MUR & - R B
fALIX B - -HUX B
PASS & - : M55 &
MASS B it e M55 B
DCS & P DCS &
RSN DES B
EPS Subsystem on/off_vi

Figure 188: Icon and Connectors for
VI EPS Subsystem On/Off-

Figure 188 is the 'false’ case block diagram for VI EPS Battery Telemetry. EPS
Subsystem On/Off VI is built to allow only one of the paired subsystems to be on at a

time. A 'false' case indicates that one or none of each paired subsystem is active.
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Figure 188: Block Diagram for VI EPS
Subsystem On/Off - 'False' Case.

Figure 189 is the 'true’ case block diagram for VI EPS Subsystem On/Off. A 'true’
case indicates that both of the 'true’ case subsystems are being switched on. The block
diagram shows that if someone attempts to turn on any paired subsystem concurrently, a

default mechanism is invoked, turning subsystem A on and subsystem B off.
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Figufe 189: Block Diagram for VI EPS Subsystem
On/Off - 'True' Case.
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F. EPS ROLL RATE/ATTITUDE VI

Figure 190 is the icon and connectors for VI EPS Roll Rate/Attitude. EPS Roll
Rate/Attitude VIwill be used to provide the user a means to determine the satellite
attitude and roll rate. This is achieved by strategically distributing eight current sensors
on the satellite solar panels. Using the power supply to simulate the solar panels, further

testing and development of this platform can continue.

Current/oltage File M [‘3"2._ e CURRENT (ma)
o= Giraph Clut

L No. Commands
S— Received Data
EPS Roll Rate/Attitude._vi
Figure 190: Icon and Connectors for VI EPS
Roll Rate/Attitude.

Figure 191 is the block diagram for VI EPS Roll Rate/Attitude. Further

development of this idea is necessary.

ultl-
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cont-
ol

Ho. Commands|

Feceived Data

Figure 191: Block Diagram for VI EPS Roll Rate/Attitude.

G. IV FILE SOLAR SIMULATOR VI

Figure 192 is the icon and connectors for VI IV File Solar Simulator VI. IV File

Solar Simulator VI has been developed to allow the testing of the prototype batteries
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during a user specified number of simulated orbit. The orbit is simulated using a

current/voltage (IV) input file.

No. Commands
o Percentage of Orbit Completed

Command In wrbar Voltage
Period of Orbit minutes = —orhit  frery  Cutrent
seconds —j— % Programmed Voltage

Programmed Current
i e 10W [iv] time [seconds}
iv file solar simulator_vi

Figure 192: Icon and Connectors for VI IV
File Solar Simulator.

time weighting facter ratio

Figure 193 is the block diagram for VI IV File Solar Simulator. The file that
contains the input current and voltage values is fed into the power supply. A time
weighing factor allows the speeding up or slowing down of real time processing. The
orbit period is adjustable. Percent of orbit completion is graphically displayed to the user

along with output voltage and current measurements.

graph
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Programmed Curren
N EH

List of Commands Out

Period of Orbit
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Figure 193: Block Diagram for V11V File Solar Simulator.




APPENDIX C. PERIPHERAL CONTROL BUS (PCB) ADDRESSES
CURRENTLY DEFINED.

Table 9 is a listing of subsystem Peripheral Control Bus (PCB) addresses

currently defined.

System Name System Address System Address
(Binary) Hexadecimal
RF Subsystem 0000, 0001 0,1
| Etectrical Power Subsystem 1000, 1001 8,9
System Control A 0010, 1011 2,3
System Control B 1010, 1011 A,B
Analog MUX A 0100, 0101 4,5
Analog MUX B 1100, 1101 C,D
Mass Storage A 0110,0111 6,7
Mass Storage B 1110, 1111 E F

Table 9: PCB Su=bsystem Addresse;[Ref. 7: p. 7]
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